ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-05
    Description: The impact of Asian dust on cloud radiative forcing during 2003–2006 is studied by using the Clouds and Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are −138.9, 69.1, and −69.7 Wm−2, which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm−2, which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm−2, which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-03-05
    Description: The dust aerosol radiative forcing and heating rate over the Taklimakan Desert in northwestern China in July 2006 are estimated using the Fu-Liou radiative transfer model along with satellite observations. The vertical distributions of the dust aerosol extinction coefficient are derived from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar measurements. The CERES (Cloud and the Earth's Energy Budget Scanner) measurements of reflected solar radiation are used to constrain the dust aerosol type in the radiative transfer model, which determines the dust aerosol single-scattering albedo and asymmetry factor as well as the aerosol optical properties spectral dependencies. We find that the dust aerosol radiative heating and effect have a significant impact on the energy budget over the Taklimakan desert. In the atmospheres containing light, moderate and heavy dust layers, the dust aerosols heat the atmosphere by up to 1, 2, and 3 K day−1, respectively. The maximum daily mean radiative heating rate reaches 5.5 K day−1 at 5 km on 29 July. The averaged daily mean net radiative effect of the dust are 44.4, −41.9, and 86.3 W m−2, respectively, at the top of the atmosphere (TOA), surface, and in the atmosphere. Among these effects about two thirds of the warming effect at the TOA is related to the longwave radiation, while about 90% of the atmospheric warming is contributed by the solar radiation. At the surface, about one third of the dust solar radiative cooling effect is compensated by its longwave warming effect. The large modifications of radiative energy budget by the dust aerosols over Taklimakan Desert should have important implications for the atmospheric circulation and regional climate, topics for future investigations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-07
    Description: To achieve good water conservancy under the well-off society before 2020, the future water conservancy planning is undergoing in Yunnan Province. In this study, by analysing the research results of domestic relevant water evaluation index systems and combining this with the water conservancy construction key of Yunnan Province, an unique evaluation index system was proposed to evaluate the well-off water conservancy level of Yunnan Province. It is composed of three levels which are the target layer, criterion layer and index layer. And the criterion layer includes six systems, namely flood control and drought relief mitigation, reasonable allocation of water resources, highly effective water utilization, water source protection and river health security, water management and securing of water development. The analytic hierarchy process (AHP) was used to determine the weight of each index. According to the present situation of water development and the related water conservancy planning in Yunnan Province, the target value of each index and evaluation standards are put forward for Yunnan Province in 2020. The results show that the evaluation results are consistent with the actual condition of water development in Yunnan Province and can be used to examine the effects of well-off water conservancy planning.
    Print ISSN: 2199-8981
    Electronic ISSN: 2199-899X
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-27
    Description: The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and γ-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models (HAMSOM and FANTOM, respectively). To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10-year periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. This slice mode under a moderate scenario (A1B) is sufficient to provide a basis for further analysis. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilized, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilization of γ-HCH increase in the future relative to the present by up to 20% (in the spring and summer months for deposition and in summer for volatilization). In the water column, total mass of γ-HCH and PCB 153 remain fairly steady in all three runs. In sediment, γ-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, due to the increased number of storms, increased duration of gale wind conditions and increased water and air temperatures, all of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods. Overall, the model results indicate that the climate change scenarios considered here generally have a negligible influence on the simulated fate and transport of the two POPs in the North Sea, although the increased number and magnitude of storms in the 21st century will result in POP resuspension and ensuing revolatilization events. Trends in emissions from primary and secondary sources will remain the key driver of levels of these contaminants over time.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-10
    Description: The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and γ-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models. To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10 yr periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. Since estimates of future concentration levels of POPs in the atmosphere, oceans and rivers are not available, our approach was to reutilise 2005 values in the atmosphere, rivers and at the open ocean boundaries for every year of the simulations. In this way, we attribute differences between the three 10 yr simulations to climate change only. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilised, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilisation of γ-HCH increase in the future relative to the present. In the water column, total mass of γ-HCH and PCB 153 remain fairly steady in all three runs. In sediment, γ-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, both of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-04
    Description: Global climate change has generally increased net primary production which leads to increasing litter inputs. Therefore assessing the impacts of increasing litter inputs on soil nutrients, plant growth and ecological Carbon (C) : nitrogen (N) : phosphorus (P) stoichiometry is critical for an understanding of C, N and P cycling and their feedback processes to climate change. In this study, we added plant litter to the 10–20 cm subsoil layer under a steppe community at rates equivalent to 0, 150, 300, 600 and 1200 g (dry mass) m−2 and measured the resulting C, N and P content of different pools (above and below ground plant biomass, litter, microbial biomass). High litter addition (120% of the annual litter inputs) significantly increased soil inorganic N and available P, aboveground biomass, belowground biomass and litter. Nevertheless small litter additions, which are more realistic compared to the future predictions, had no effect on the variables examined. Our results suggest that while very high litter addition can strongly affect C : N : P stoichiometry, the grassland studied here is quite resilient to more realistic inputs in terms of stoichiometric functioning. This result highlights the complexity of the ecosystem's response to climate change.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-01
    Description: Extremely severe and persistent haze occurred in January 2013 over the eastern and northern China. The record-breaking high concentrations of fine particulate matter (PM2.5) of more than 700 μg m−3 on hourly average and the persistence of the episodes have raised widespread, considerable public concerns. During that period, seven of the top ten polluted cities in China were within Hebei Province. The three cities in southern Hebei, Shijiazhuang, Xingtai, and Handan, have been listed as the top three polluted cities according to the statistics for the first half year of 2013. In this study, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system are applied to simulate the 2013 severe winter regional hazes in East Asia and the northern China at horizontal grid resolutions of 36 and 12 km, respectively, using the Multi-resolution Emission Inventory of China (MEIC). The source contributions of major source regions and sectors to PM2.5 concentrations in the three most-polluted cities in southern Hebei are quantified aiming at the understanding of the sources of the severe haze pollution in this region, and the results are compared with December 2007, the haziest month in 2001–2010. Model evaluation against meteorological and air quality observations indicates an overall acceptable performance and the model tends to underpredict PM2.5 and coarse particulate matter (PM10) concentrations during the extremely severe polluted episodes. The MEIC inventory is proved to be a good estimation in terms of total emissions of cities but uncertainties exist in the spatial allocations of emissions into fine grid resolutions within cities. The source apportionment shows that emissions from the northern Hebei and the Beijing–Tianjin city cluster are two major regional contributors to the pollution in January 2013 in Shijiazhuang, comparing with those from Shanxi and the northern Hebei for December 2007. For Xingtai and Handan, the emissions from the northern Hebei and Henan are important. The industrial and domestic sources are the most significant local contributors, and the domestic and agricultural emissions from Shandong and Henan are unnegligible regional sources, especially for Xingtai and Handan. Even in the top two haziest months (i.e., January 2013 and December 2007), a large fraction of PM2.5 in the three cities may originate from quite different regional sources. These results indicate the importance of establishing a regional joint framework of policymaking and action system to effectively mitigate air pollution in this area, not only over Beijing–Tianjin–Hebei area, but also surrounding provinces such as Henan, Shandong, and Shanxi.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-09
    Description: Global climate change has generally modified net primary production (NPP) which leads to increasing litter inputs in some ecosystems. Therefore, assessing the impacts of increasing litter inputs on soil nutrients, plant growth and ecological carbon (C) : nitrogen (N) : phosphorus (P) stoichiometry is critical for an understanding of C, N and P cycling and their feedback processes to climate change. In this study, we added plant above-ground litter, harvested near the experimental plots, to the 10–20 cm subsoil layer of a steppe community at rates equivalent to annual litter input of 0, 15, 30, 60 and 120%, respectively, covering the entire range of the expected NPP increases in this region due to climate change (10–60%). We measured the resulting C, N and P content of different pools (above- and below-ground plant biomass, litter, microbial biomass). Small litter additions, which are more plausible compared to the expected increase predicted by Earth system models, had no effect on the variables examined. Nevertheless, high litter addition (120% of the annual litter inputs) significantly increased soil inorganic N and available P, above-ground biomass, below-ground biomass and litter. Our results suggest that while very high litter addition can strongly affect C : N : P stoichiometry, the grassland studied here is resilient to more plausible inputs in terms of stoichiometric functioning.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-31
    Description: Extremely severe and persistent haze occurred in January 2013 over eastern and northern China. The record-breaking high concentrations of fine particulate matter (PM2.5) of more than 700 μg m−3 on hourly average and the persistence of the episodes have raised widespread, considerable public concerns. During that period, 7 of the top 10 polluted cities in China were within the Hebei Province. The three cities in southern Hebei (Shijiazhuang, Xingtai, and Handan) have been listed as the top three polluted cities according to the statistics for the first half of the year 2013. In this study, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system are applied to simulate the 2013 severe winter regional hazes in East Asia and northern China at horizontal grid resolutions of 36 and 12 km, respectively, using the Multi-resolution Emission Inventory for China (MEIC). The source contributions of major source regions and sectors to PM2.5 concentrations in the three most polluted cities in southern Hebei are quantified by aiming at the understanding of the sources of the severe haze pollution in this region, and the results are compared with December 2007, the haziest month in the period 2001–2010. Model evaluation against meteorological and air quality observations indicates an overall acceptable performance and the model tends to underpredict PM2.5 and coarse particulate matter (PM10) concentrations during the extremely polluted episodes. The MEIC inventory is proven to be a good estimation in terms of total emissions of cities but uncertainties exist in the spatial allocations of emissions into fine grid resolutions within cities. The source apportionment shows that emissions from northern Hebei and the Beijing-Tianjin city cluster are two major regional contributors to the pollution in January 2013 in Shijiazhuang, compared with those from Shanxi and northern Hebei for December 2007. For Xingtai and Handan, the emissions from northern Hebei and Henan are important. The industrial and domestic sources are the most significant local contributors, and the domestic and agricultural emissions from Shandong and Henan are non-negligible regional sources, especially for Xingtai and Handan. Even in the top two haziest months (i.e., January 2013 and December 2007), a large fraction of PM2.5 in the three cities may originate from quite different regional sources. These results indicate the importance of establishing a regional joint framework of policymaking and action system to effectively mitigate air pollution in this area, not only over the Beijing-Tianjin-Hebei area, but also surrounding provinces such as Henan, Shandong, and Shanxi.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-06-18
    Description: The dust aerosol radiative forcing and heating rate over the Taklimakan Desert in Northwestern China in July 2006 are estimated using the Fu-Liou radiative transfer model along with satellite observations. The vertical distributions of the dust aerosol extinction coefficient are derived from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar measurements. The CERES (Cloud and the Earth's Energy Budget Scanner) measurements of reflected solar radiation are used to constrain the dust aerosol type in the radiative transfer model, which determines the dust aerosol single-scattering albedo and asymmetry factor as well as the aerosol optical properties' spectral dependencies. We find that the dust aerosols have a significant impact on the radiative energy budget over the Taklimakan desert. In the atmospheres containing light, moderate and heavy dust layers, the dust aerosols heat the atmosphere (daily mean) by up to 1, 2, and 3 K day−1, respectively. The maximum daily mean radiative heating rate reaches 5.5 K day−1 at 5 km on 29 July. The averaged daily mean net radiative effect of the dust are 44.4, −41.9, and 86.3 W m−2, respectively, at the top of the atmosphere (TOA), surface, and in the atmosphere. Among these effects about two thirds of the warming effect at the TOA is related to the longwave radiation, while about 90% of the atmospheric warming is contributed by the solar radiation. At the surface, about one third of the dust solar radiative cooling effect is compensated by its longwave warming effect. The large modifications of radiative energy budget by the dust aerosols over Taklimakan Desert should have important implications for the atmospheric circulation and regional climate, topics for future investigations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...