ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (11)
  • 1
    Publication Date: 2009-06-02
    Description: We use results of a 3-D photochemistry/transport model for ozone formation in Mexico City during events in 1997 to investigate ambient concentrations of reactive nitrogen in relation to ozone-precursor sensitivity. Previous results from other locations suggest that ratios such as O3/NOy and H2O2/HNO3 might provide measurement-based indicators for NOx-sensitive or VOC-sensitive conditions. Mexico City presents a different environment due to its high concentrations of VOC and high level of pollutants in general. The model predicts a correlation between PAN and O3 with relatively high PAN/O3 (0.07), which is still lower than measured values. The model PAN is comparable with results from a model for Paris but much higher than were found in Nashville in both models and measurements. The difference is due in part to the lower temperature in Mexico City relative to Nashville. Model HNO3 in Mexico City is unusually low for an urban area and PAN/HNO3 is very high, probably due to the high ratio of reactivity-weighted VOC to NOx. The model predicts that VOC-sensitive chemistry in Mexico is associated with high NOx, NOy and NOx/NOy and with low O3/NOy and H2O2/HNO3, suggesting that these indicators work well for Mexico City. The relation between ozone-precursor sensitivity and either O3/NOz or O3/HNO3 is more ambiguous. VOC-sensitive conditions are associated with higher O3/HNO3 than would be found in NOx-sensitive conditions, but model O3/HNO3 associated with both NOx-sensitive and VOC-sensitive chemistry is higher in Mexico than in other cities. The model predicts a mixed pattern of ozone-precursor sensitivity in Mexico City, with VOC-sensitive conditions in the morning and NOx-sensitive in the afternoon, in contrast to results from other models for more recent events that predicted strongly VOC- sensitive conditions throughout the day. The difference in predicted ozone-precursor sensitivity is most likely due to different emission rates and to changes in emissions over time. The model with mixed sensitivity predicts much lower ambient NOx and NOx/NOy than the strongly VOC-sensitive model.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-31
    Description: Recent experimental findings indicate that secondary organic aerosol (SOA) represents an important and, under many circumstances, the major fraction of the organic aerosol burden. Here, we use a global 3-D model (IMPACT) to test the results of different mechanisms for the production of SOA. The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles together with assumptions for the rate of formation of low-volatility oligomers. We also include the formation of low-volatility SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols. A model simulation including these SOA formation mechanisms gives an annual global SOA production of 120.5 Tg. The global production of SOA is decreased substantially to 90.8 Tg yr−1 if the HOx regeneration mechanism proposed by Peeters et al. (2009) is used. Model predictions with and without this HOx (OH and HO2 regeneration scheme are compared with multiple surface observation datasets, namely: the Interagency Monitoring of Protected Visual Environments (IMPROVE) for the United States, the European Monitoring and Evaluation Programme (EMEP), and aerosol mass spectrometry (AMS) data measured in both the Northern Hemisphere and tropical forest regions. All model simulations show reasonable agreement with the organic carbon mass observed in the IMPROVE network and the AMS dataset, however observations in Europe are significantly underestimated, which may be caused by an underestimation of primary organic aerosol emissions (POA) in winter and of emissions and/or SOA production in the summer. The modeled organic aerosol concentrations tend to be higher by roughly a factor of three when compared with measurements at three tropical forest sites. This overestimate suggests that more measurements and model studies are needed to examine the formation of organic aerosols in the tropics. The modeled organic carbon (OC) in the free troposphere is in agreement with measurements in the ITCT-2K4 aircraft campaign over North America and in pollution layers off Asia during the INTEX-B campaign, although the model underestimates OC in the free troposphere in comparison with the ACE-Asia campaign off the coast of Japan.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-15
    Description: This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-12
    Description: There is growing interest in the formation of secondary organic aerosol (SOA) through condensed aqueous phase reactions. In this study, we use a global model (IMPACT) to investigate the potential formation of SOA in the aqueous phase. We compare results from several multiphase process schemes with detailed aqueous phase reactions to schemes that use a first order gas-to-particle formation rate based on uptake coefficients. The net global SOA production rate in cloud water ranges from 19.5 Tg yr−1 to 46.8 Tg yr−1 while that in aerosol water ranges from −0.9 Tg yr−1 to 12.6 Tg yr−1. The rates using first order uptake coefficients are over two times higher than the multiphase schemes in cloud water. Using first order uptake coefficients leads to a net SOA production rate in aerosol water as high as 12.6 Tg yr−1, while the fully multiphase schemes cause a negative net production rate. These rates can be compared to the gas phase formation rate of 29.0 Tg yr−1 that results from gas-particle partitioning and the formation rate of 25.8 Tg yr−1 from the uptake of epoxide. The annual average organic acid concentrations (the major SOA products formed in cloud) peak over the tropical regions, while oligomers (the major SOA products formed in aerosol water) generally show maxima over industrialized areas in the Northern Hemisphere. A sensitivity test to investigate two representations of cloud water content from two global models shows that increasing cloud water by a factor of 2.7 can increase the net SOA production rate in cloud by a factor of 4.2 at low altitudes (below approximately 900 hPa). We also investigated the importance of including dissolved iron chemistry in cloud water aqueous reactions. Adding these reactions increases the formation rate of aqueous phase HOx by a factor of 2.2 and decreases the amount of global SOA formed by 44%. Previously, we showed that the model that uses the uptake method to simulate SOA formed in both cloud and aerosol water over-predicts observed SOA by a factor as high as 3.8 in tropical regions. The use of the multiphase reaction scheme for SOA formation in cloud water brings the model's predictions to within a factor of 2 of the observations. All simulations show reasonable agreement with aerosol mass spectrometry (AMS) measurements in the Northern Hemisphere, though using the uptake method to simulate SOA formed in aerosol water improves the results by around 10% compared to the use of the multiphase reaction scheme. All cases studied here tend to underestimate observations of oxalic acid, particularly in Europe in winter, in the Amazon, Africa, and China as well as over ocean regions. The model with iron chemistry under predicts measurements in almost all regions. Finally, the comparison of O/C ratios estimated in the model with those estimated from measurements shows that the modeled SOA has a slightly higher O/C ratio than the observed SOA for all cases.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-07
    Description: This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry/transport and general circulation models have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over an order of magnitude exists in the modeled vertical distribution of OA that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing and is important for model evaluation against OA and OC observations, it is resolved only by few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median secondary OA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.4–3.8 Tg) with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA / sulfate burden ratio of is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations the model-observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model/measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and of POA aging, although, the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The correlations overall are low when comparing with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that the knowledge about the processes, on top of the sources, are important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to separate between anthropogenic and natural OA and accurately calculate the impact of OA on climate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-06-18
    Description: A new mechanism to simulate the formation of secondary organic aerosols (SOA) from reactive primary hydrocarbons is presented, together with comparisons with experimental smog chamber results and ambient measurements found in the literature. The SOA formation mechanism is based on an approach using calculated vapor pressures and a selection of species that can partition to the aerosol phase from a gas phase photochemical mechanism. The mechanism has been validated against smog chamber measurements using α-pinene, xylene and toluene as SOA precursors, and has an average error of 17%. Qualitative comparisons with smog chamber measurements using isoprene were also performed. A comparison against SOA production in the TORCH 2003 experiment (atmospheric measurements) had an average error of only 12%. This contrasts with previous efforts, in which it was necessary to increase partition coefficients by a factor of 500 in order to match the observed values. Calculations for rural and urban-influenced regions in the eastern U.S. suggest that most of the SOA is biogenic in origin, mainly originated from isoprene. A 0-dimensional calculation based on the New England Air Quality Study also showed good agreement with measured SOA, with about 40% of the total SOA from anthropogenic precursors. This mechanism can be implemented in a general circulation model (GCM) to estimate global SOA formation under ambient NOx and HOx levels.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-09-22
    Description: Recent experimental findings indicate that Secondary Organic Aerosol (SOA) represents an important and, under many circumstances, the major fraction of the organic aerosol burden. Here, we use a global 3-d model (IMPACT) to test the results of different mechanisms for the production of SOA. The basic mechanism includes SOA formation from organic nitrates and peroxides produced from an explicit chemical formulation, using partition coefficients based on thermodynamic principles. We also include the formation of non-evaporative SOA from the reaction of glyoxal and methylglyoxal on aqueous aerosols and cloud droplets as well as from the reaction of epoxides on aqueous aerosols. A model simulation including these SOA formation mechanisms gives an annual global SOA production of 113.5 Tg. The global production of SOA is substantially decreased to 85.0 Tg yr−1 if the HOx regeneration mechanism proposed by Peeters et al. (2009) is used. Model predictions with and without this HOx regeneration scheme are compared with multiple surface observation datasets, namely: the Interagency Monitoring of Protected Visual Environments (IMPROVE) for the United States, the European Monitoring and Evaluation Programme (EMEP) as well as Aerosol Mass Spectrometry (AMS) data measured in both Northern Hemisphere and tropical forest regions. All model simulations realistically predict the organic carbon mass observed in the Northern Hemisphere, although they tend to overestimate the concentrations in tropical forest regions. This overestimate may result from an unrealistically high uptake rate of glyoxal and methylglyoxal on aqueous aerosols and in cloud drops. The modeled OC in the free troposphere is in agreement with measurements in the ITCT-2K4 aircraft campaign over the North America and in pollution layers in Asia during the INTEX-B campaign, although the model underestimates OC in the free troposphere during the ACE-Asia campaign off the coast of Japan.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-17
    Description: The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM4). Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999) with a fast solver based on radical balances. We evaluate the model over Continental Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a six-year simulation (2000–2005). For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the August 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-05-22
    Description: The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM4). Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999) with a fast solver based on radical balances. We evaluate the model over continental Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a six-year simulation (2000–2005). For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Programme (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the summer 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-04
    Description: There is growing interest in the formation of secondary organic aerosol (SOA) through condensed aqueous-phase reactions. In this study, we use a global model (IMPACT) to investigate the potential formation of SOA in the aqueous phase. We compare results from several multiphase process schemes with detailed aqueous-phase reactions to schemes that use a first-order gas-to-particle formation rate based on uptake coefficients. The predicted net global SOA production rate in cloud water ranges from 13.1 Tg yr−1 to 46.8 Tg yr−1 while that in aerosol water ranges from −0.4 Tg yr−1 to 12.6 Tg yr−1. The predicted global burden of SOA formed in the aqueous phase ranges from 0.09 Tg to 0.51 Tg. A sensitivity test to investigate two representations of cloud water content from two global models shows that increasing cloud water by an average factor of 2.7 can increase the net SOA production rate in cloud water by a factor of 4 at low altitudes (below approximately 900 hPa). We also investigated the importance of including dissolved Fe chemistry in cloud water aqueous reactions. Adding these reactions increases the formation rate of aqueous-phase OH by a factor of 2.6 and decreases the amount of global aqueous SOA formed by 31%. None of the mechanisms discussed here is able to provide a best fit for all observations. Rather, the use of an uptake coefficient method for aerosol water and a multi-phase scheme for cloud water provides the best fit in the Northern Hemisphere and the use of multiphase process scheme for aerosol and cloud water provides the best fit in the tropics. The model with Fe chemistry underpredicts oxalate measurements in all regions. Finally, the comparison of oxygen-to-carbon (O / C) ratios estimated in the model with those estimated from measurements shows that the modeled SOA has a slightly higher O / C ratio than the observed SOA for all cases.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...