ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-23
    Description: A new version of the High-Resolution Infrared Radiation Sounder (HIRS) upper tropospheric water vapor channel (channel 12) brightness temperature dataset is developed using intersatellite calibrated data. In this dataset, only those pixels affected by upper tropospheric clouds are discarded. Compared to the previous version that was based on column-clear-sky data, the new version has much better daily spatial coverage. The HIRS observation patterns are compared to microwave sounder measurements. The differences between the two types of sounders vary with respect to brightness temperature with larger differences for higher (dry) values. Correlations between the HIRS upper tropospheric water vapor channel brightness temperatures and several major climate indices show strong signals during cold seasons. The selected climate indices track climate variation signals covering regions from the tropics to the poles. Qualitatively, moist signals are correlated with troughs and ascending branches of the circulation, while dry signals occur with ridges and descent. These correlations show the potential of using the upper tropospheric water vapor channel brightness temperature dataset together with a suite of many atmospheric variables to monitor regional climate changes and locate global teleconnection patterns.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-21
    Description: A new version of the upper tropospheric water vapor dataset is developed using intersatellite calibrated all-sky High-Resolution Infrared Radiation Sounder (HIRS) data. In this dataset, the majority of pixels that do not affect the water vapor processing in the upper troposphere are retained. Compared to the previous version that was based on column-clear-sky data, the new version has a much better daily spatial coverage and provides a better representation of the atmosphere. The HIRS observation patterns are compared to microwave sounder measurements. The differences between the two types of sounders are examined, and the analysis displays that the differences vary with respect to brightness temperature. An examination of the correlations of the HIRS upper tropospheric water vapor with major climate indices shows that the dataset is well correlated with climate indices especially in cold seasons. The selected climate indices track climate variation signals covering regions from the tropics to the poles. The correlation analysis shows the potential of using the upper tropospheric water vapor dataset together with a suite of many atmospheric variables to monitor regional climate changes and locate global teleconnection patterns.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-02
    Description: There have been only a few studies that allow us to estimate the contribution of newly-created reservoirs to greenhouse gas budgets. In particular, information is limited for understanding the spatiotemporal variation of N2O flux and the underlying mechanisms in the littoral zone where complex biochemical processes are induced by water level fluctuations. A study was carried out at five different water levels (deep water area, shallow water area, seasonally flooded area, control site for seasonally flooded area and non-flooded area) at the littoral zone of a temperate reservoir using the static chamber technique. Seasonal and spatial variations of N2O flux and environmental factors were monitored throughout the growing season including a flood event during summer rains. The N2O flux ranged from −2.29 to 182.47 μg m−2 h−1. Non-flooded dry land emitted more N2O than flooded land, no matter whether it was permanently or seasonally flooded. However, no significant difference was observed between seasonally flooded sites and their control sites. Wind speed, air temperature, soil water content, dissolved oxygen in water and soil nitrate influenced N2O flux significantly. In order to know the contrasting characteristics of N2O and CH4 fluxes in the littoral zone of the reservoir, results were compared with a previous study on CH4 emission carried out at the same sites and time with comparable methods. It showed that N2O flux and CH4 flux was influenced by distinct factors and in differing ways. This work highlights the complexity of N2O flux at the littoral zone. The different response ways of N2O and CH4 to environments implies the big challenge of greenhouse gas emission control through ecosystem management.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-05
    Description: We use 30 years of intercalibrated HIRS data to produce a 30 year data set of upper tropospheric humidity with respect to ice (UTHi). Since the required brightness temperatures (channels 12 and 6, T12 and T6) are intercalibrated to different versions of the HIRS sensors (HIRS/2 and HIRS/4) it is necessary to convert the channel 6 brightness temperatures which are intercalibrated to HIRS/4 into equivalent brightness temperatures intercalibrated to HIRS/2, which is achieved using a linear regression. Using the new regression coefficients we produce daily files of UTHi, T12 and T6, for each NOAA satellite and METOP-A, which carry the HIRS instrument. From this we calculate daily and monthly means in 2.5° × 2.5° resolution for the northern mid-latitude zone 30 to 60° N. As a first application we calculate decadal means of UTHi and the brightness temperatures for the two decades 1980–1989 and 2000–2009. We find that the humidity mainly increased from the 1980s to the 2000s and that this increase is highly statistically significant in large regions of the considered mid-latitude belt. The main reason for this result and its statistical significance is the corresponding increase of the T12 variance. Changes of the mean brightness temperatures are less significant.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-06
    Description: There have been few studies of greenhouse gas emissions from reservoirs, despite the remarkable growth in the number of reservoirs in developing countries. We report a case study that focuses on the littoral zone of a major Chinese reservoir, where we established measurements of N2O fluxes using the static chamber technique at five different water levels (deep water, shallow water, seasonally flooded, control for seasonally flooded, and non-flooded). The "control for seasonal flooded" had similar vegetation to the "seasonally flooded" but was not actually flooded as it was on a higher piece of land. Seasonal, diurnal and spatial variations of N2O flux and environmental factors were monitored throughout the growing season which included a flood event during summer rains. The N2O flux ranged from −136.6 to 381.8 μg m−2 h−1 averaging 6.8 μg m−2 h−1. Seasonal and spatial variation was significant but diurnal variation was not. Non-flooded dry land emitted more N2O than flooded land, no matter whether it was permanently or seasonally flooded. Piecewise correlation was found between N2O flux, air temperature and soil nitrate concentration. Positive correlation was shown between N2O flux and dissolved oxygen in water. There were significantly higher emissions from farmland. We compared these results with our recently published study of CH4 emissions, carried out simultaneously at the same site as those in the present study. Completely different patterns between the two gases are demonstrated. We conclude that the littoral zone is a hotspot for N2O emissions in the summer, especially when the shores of the lake are used for the farming of maize. But in terms of the overall greenhouse gas budget, the fluxes of N2O are not as important as those of CH4.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-28
    Description: We use 30 years of intercalibrated HIRS (High-Resolution Infrared Radiation Sounder) data to produce a 30-year data set of upper tropospheric humidity with respect to ice (UTHi). Since the required brightness temperatures (channels 12 and 6, T12 and T6) are intercalibrated to different versions of the HIRS sensors (HIRS/2 and HIRS/4) it is necessary to convert the channel 6 brightness temperatures which are intercalibrated to HIRS/4 into equivalent brightness temperatures intercalibrated to HIRS/2, which is achieved using a linear regression. Using the new regression coefficients we produce daily files of UTHi, T12 and T6, for each NOAA satellite and METOP-A (Meteorological Operational Satellite Programme), which carry the HIRS instrument. From this we calculate daily and monthly means in 2.5° × 2.5° resolution for the northern midlatitude zone 30–60° N. As a first application we calculate decadal means of UTHi and the brightness temperatures for the two decades 1980–1989 and 2000–2009. We find that the humidity mainly increased from the 1980s to the 2000s and that this increase is highly statistically significant in large regions of the considered midlatitude belt. The main reason for this result and its statistical significance is the corresponding increase of the T12 variance. Changes of the mean brightness temperatures are less significant.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-08-25
    Description: With one bias estimation method, the latitude-related error distribution of instrumental biases estimated from the GPS observations in Chinese middle and low latitude region in 2004 is analyzed statistically. It is found that the error of GPS instrumental biases estimated under the assumption of a quiet ionosphere has an increasing tendency with the latitude decreasing. Besides the asymmetrical distribution of the plasmaspheric electron content, the obvious spatial gradient of the ionospheric total electron content (TEC) along the meridional line that related to the Equatorial Ionospheric Anomaly (EIA) is also considered to be responsible for this error increasing. The RMS of satellite instrumental biases estimated from mid-latitude GPS observations in 2004 is around 1 TECU (1 TECU = 1016/m2), and the RMS of the receiver's is around 2 TECU. Nevertheless, the RMS of satellite instrumental biases estimated from GPS observations near the EIA region is around 2 TECU, and the RMS of the receiver's is around 3–4 TECU. The results demonstrate that the accuracy of the instrumental bias estimated using ionospheric condition is related to the receiver's latitude with which ionosphere behaves a little differently. For the study of ionospheric morphology using the TEC derived from GPS data, in particular for the study of the weak ionospheric disturbance during some special geo-related natural hazards, such as the earthquake and severe meteorological disasters, the difference in the TEC accuracy over different latitude regions should be paid much attention.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...