ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-06
    Description: The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR) on board Odin, the Microwave Limb Sounder (MLS) on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS) and measurements from solar occultation instruments (ACE-FTS) is challenging since the measurements correspond to different solar zenith angles (or local times). However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3) of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite observations and the model agree well in terms of absolute mixing ratios. The differences between the day and night values of the model are in good agreement with the observations although the amplitude of the HO2 diurnal variation is 10–20% lower in the model than in the observations. In particular, the data offered the opportunity to study the reaction ClO+HO2 → HOCl+O2 in the lower mesosphere at 55 km. At this altitude the HOCl night-time variation depends only on this reaction. The result of this analysis points towards a value of the rate constant within the range of the JPL 2006 recommendation and the upper uncertainty limit of the JPL 2011 recommendation at 55 km.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-06-08
    Description: We determined the mean crustal uplifting rate during the late Holocene along the Soya Coast, Lützow-Holm Bay, East Antarctica, by dating a marine-lacustrine transition recorded in lake sediments. We focused on temporal variations in the chemical composition of sediments recovered from Lake Skallen Oike at Skallen and Lake Oyako at Skarvsnes. Both sets of lake sediments record environmental changes associated with a transition from marine to lacustrine (fresh water) settings, as indicated by analyses of sedimentary facies for carbon and nitrogen contents, nitrogen isotopic compositions (15N/14N), and major element concentrations. Changes in the dominant primary producers during the marine-lacustrine transition were also clearly revealed by biogenic Opal-A, diatom assemblages, and gradient gel electrophoresis (DGGE) with 16S rRNA gene analysis. Geochronology based on radiocarbon dating of acid-insoluble organic carbon suggested that the environmental transition from saline to fresh water occurred at 2940±100 cal yr BP at L. Skallen and 1060±90 cal yr BP at L. Oyako. Based on these data and a linear approximation model, we estimated a mean crustal uplifting rate of 3.6 mm yr−1 for the period since the marine-lacustrine transition via brackish condition; this uplift is attributed to glacial-isostatic rebound along the Soya Coast. The geological setting was the primary factor in controlling the emergence event and the occurrence of simultaneous changes in sedimentary and biological facies along the zone of crustal uplift.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-03-01
    Description: No abstract available. doi:10.2204/iodp.sd.2.01.2006
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-23
    Description: The largest uncertainty in projections of future sea-level change still results from the potentially changing dynamical ice discharge from Antarctica. While ice discharge can alter through a number of processes, basal ice-shelf melting induced by a warming ocean has been identified as a major if not the major cause for possible additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting using experiments carried out within the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. As used here these response functions provide separate contributions for four different Antarctic drainage regions. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP) using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. Uncertainty in the climatic forcing, the oceanic response and the ice-model differences is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The additional ice-loss (Table 6) is clearly scenario-dependent and results in a median of 0.07 m (66%-range: 0.04–0.10 m; 90%-range: −0.01–0.26 m) of global sea-level equivalent for the low-emission RCP-2.6 scenario and yields 0.1 m (66%-range: 0.06–0.14 m; 90%-range: −0.01–0.45 m) for the strongest RCP-8.5. If only models with an explicit representation of ice-shelves are taken into account the scenario dependence remains and the values change to: 0.05 m (66%-range: 0.03–0.08 m) for RCP-2.6 and 0.07 m (66%-range: 0.04–0.11 m) for RCP-8.5. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models. Without this time delay the ranges for all ice-models changes to 0.10 m (66%-range: 0.07–0.12 m; 90%-range: 0.01–0.28 m) for RCP-2.6 and 0.15 m (66%-range: 0.10–0.21 m; 90%-range: 0.02–0.53 m) for RCP-8.5. All probability distributions as provided in Fig. 10 are highly skewed towards high values.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-12
    Description: The land subsidence of the Nobi Plain largely ceased with the commencement of pumping regulations beginning in 1975. However, a small amount of land subsidence, less than one centimeter, is still observed at the Delta zone in the southwest part of the Plain. The authors attempted to investigate the cause of the small amount of existing subsidence. The alluvial clay layer deposits are more than 15–20 m thick and the withdrawal is small. The decrease of the yearly average groundwater level has not been confirmed. On the other hand, the seasonal change in the groundwater level is clearly observed. This investigation focuses on the seasonal change of groundwater level each year and its relation to the thickness of alluvial clay layer. The Delta zone was divided into several cells and a multiple regression analysis was applied to the seasonal change of the groundwater level and the thickness of alluvial clay layer of the cell. The study concluded that the small amount of land subsidence was caused of drawdown of piezometric head of groundwater every year during the summer.
    Print ISSN: 2199-8981
    Electronic ISSN: 2199-899X
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-13
    Description: The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP) using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. The uncertainty in the climatic forcing, the oceanic response and the ice-model response is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The uncertainty range we derived for the Antarctic contribution to global sea-level rise from 1992 to 2011 is in full agreement with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time delayed warming of the oceanic subsurface compared with the surface air temperature. The median of the additional ice-loss for the 21st century (Table 6) is 0.07 m (66%-range: 0.02–0.14 m; 90%-range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 scenario and 0.09 m (66%-range: 0.04–0.21 m; 90%-range: 0.01–0.37 m) for the strongest RCP-8.5 if models with explicit ice-shelf representation are applied. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models. Without this time delay the values increase to 0.09 m (66%-range: 0.04–0.17 m; 90%-range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66%-range: 0.07–0.28 m; 90%-range: 0.04–0.43 m) for RCP-8.5. Our results are scenario dependent which is most visible in the upper percentiles of the distribution, i.e. highest contributions to sea level rise. All probability distributions, as provided in Fig. 12, are highly skewed towards high values. The applied ice-sheet models are coarse-resolution with limitations in the representation of grounding-line motion. However, we find the main uncertainty to be introduced by the external forcing to the ice-sheets, i.e. the climatic and oceanic uncertainty dominate. The scaling coefficients for the four different drainage basins provide valuable information for further assessments of future Antarctic ice discharge.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-14
    Description: The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-21
    Description: An ice core was retrieved in June 1998 from the Gorshkov crater glacier at the top of the Ushkovsky volcano, in central Kamchatka. This ice core is one of only two recovered from Kamchatka so far, thus filling a gap in the regional instrumental climate network. Hydrogen isotope (δD) analyses and past accumulation reconstructions were conducted for the top 140.7 m of the core, spanning 1736–1997. Two accumulation reconstruction methods were developed and applied with the Salamatin and the Elmer/Ice firn-ice dynamics models, revealing a slightly increasing or nearly stable trend, respectively. Wavelet analysis shows that the ice core records have significant decadal and multi-decadal variabilities at different times. Around 1880 the multi-decadal variability of δD became lost and its average value increased by 6‰. The multi-decadal variability of reconstructed accumulation rates changed at around 1850. Reconstructed accumulation variations agree with ages of moraines in Kamchatka. Ice core signals were significantly correlated with North Pacific sea surface temperature (SST) and surface temperature (2 m temperature). δD correlates with the North Pacific Gyre Oscillation (NPGO) index after the climate regime shift in 1976/1977, but not before that. Therefore, our findings imply that the ice core record contains various information on the local, regional and large-scale climate variability in the North Pacific region. Understanding all detailed mechanisms behind the time-dependent connections between these climate patterns is challenging and requires further efforts towards multi-proxy analysis and climate modelling.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-17
    Description: To investigate past climate change in the Northwest Pacific region, an ice core was retrieved in June 1998 from the Gorshkov crater glacier at the top of the Ushkovsky volcano, in central Kamchatka. Hydrogen isotope (δD) analysis and past accumulation reconstructions were conducted to a depth of 140.7 m, dated to 1735. Two accumulation reconstruction methods were applied with the Salamatin and the Elmer/Ice ice flow models. Reconstructed accumulation rates and δD were significantly correlated with North Pacific surface temperature. This, and a significant correlation of δD with the North Pacific Gyre Oscillation (NPGO) index implies that NPGO data is contained in this record. Wavelet analysis shows that the ice core records have significant multi-decadal power spectra up to the late 19th century. The multi-decadal periods of reconstructed accumulation rates change at around 1850 in the same way as do Northeast Pacific ice core and tree ring records. The loss of multi-decadal scale power spectra of δD and the 6‰ increase in its average value occurred around 1880. Thus the core record confirms that the periodicity of precipitation for the entire North Pacific changed between the end of the Little Ice Age through the present due to changes in conditions in the North Pacific Ocean.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-08-20
    Description: The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimeter instruments and two infrared spectrometers are used, namely from the Sub-Millimeter Radiometer (SMR) on board Odin, the Microwave Limb Sounder (MLS) on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS) and measurements from solar occultation instruments (ACE-FTS) is challenging since the measurements correspond to different solar zenith angles (or local times). However, using a model which covers all solar zenith angles and the new SMILES instrument which measures at all local times over a period of several months provides the possibility to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. This study presents the first evaluation of HO2 Odin/SMR data and also the first comparison of the new SMILES data and the latest version of MLS (version 3.3) with other satellite observations. The MISU-1D model has been run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite observations and the model generally agree well in terms of absolute mixing ratios as well as differences between the day and night values. This confirms that gas phase chemistry of these species based on latest recommendations of reaction rate constants is fairly well understood.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...