ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-03
    Description: Thorium–lead (Th-Pb) crystallization ages of hydrothermal monazites from the western, central and eastern Tauern Window provide new insights into Cenozoic tectonic evolution of the Tauern metamorphic dome. Growth domain crystallization ages range from 21.7 ± 0.4 to 10.0 ± 0.2 Ma. Three major periods of monazite growth are recorded between ∼ 22–20 (peak at 21 Ma), 19–15 (major peak at 17 Ma) and 14–10 Ma (major peak around 12 Ma), respectively, interpreted to be related to prevailing N–S shortening, in association with E–W extension, beginning strike-slip movements and reactivation of strike-slip faulting. Fissure monazite ages largely overlap with zircon and apatite fission track data. Besides tracking the thermal evolution of the Tauern dome, monazite dates reflect episodic tectonic movement along major shear zones that took place during the formation of the dome. Geochronological and structural data from the Pfitschtal area in the western Tauern Window show the existence of two cleft generations separated in time by 4 Ma and related to strike-slip to oblique-slip faulting. Moreover, these two phases overprint earlier phases of fissure formation. Highlights. In situ dating of hydrothermal monazite-(Ce). New constraints on the exhumation of the Tauern metamorphic dome. Distinct tectonic pulses recorded from east to west.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Oxygen isotope geochemistry is a powerful tool for investigating rocks that interacted with fluids, to assess fluid sources and quantify the conditions of fluid-rock interaction. We present an integrated modelling approach and the computer program PTLOOP that combine thermodynamic and oxygen isotope fractionation modelling for multi-rock open systems. The strategy involves a robust petrological model performing on-the-fly Gibbs energy minimizations coupled to an oxygen fractionation model both based on internally consistent databases. This approach is applied to subduction zone metamorphism to predict the possible range of δ18O values for stable phases and aqueous fluids at various pressure-temperature (P-T) conditions in the subducting slab. The modelled system is composed by a sequence of oceanic crust (mafic) with sedimentary cover of known initial chemical composition and bulk δ18O. The evolution of mineral assemblage and δ18O values of each phase is calculated along a defined P-T path. Fluid-rock interactions may occur as consequence of (1) infiltration of an external fluid into the mafic rocks or (2) transfer of the fluid liberated by dehydration reactions occurring in the mafic rocks into the sedimentary rocks. The effects of interaction with externally-derived fluids on the mineral and bulk δ18O of each rock are quantified for two typical compositions of metabasalts and metasediments with external fluid influx from serpentinite. The dehydration reactions, fluid loss and mineral fractionation produce minor to negligible variations in bulk δ18O values, i.e. within 1 ‰. By contrast, the interaction with external fluids may lead to shifts in δ18O up to one order of magnitude larger. Such variations can be detected by analysing in-situ oxygen isotope in key metamorphic minerals such as garnet, white mica and quartz. The simulations show that, when the water released by the slab infiltrates the forearc mantle wedge, it can cause extensive serpentinization within fractions of a Myr and significant oxygen isotope variation at the interface. This technique opens new perspectives to track fluid pathways in subduction zones, to distinguish porous from channelized fluid flows, and to determine the P-T conditions and the extent of fluid/rock interaction.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-10
    Description: Oxygen isotope geochemistry is a powerful tool for investigating rocks that interacted with fluids, to assess fluid sources and quantify the conditions of fluid–rock interaction. We present an integrated modelling approach and the computer program PTLoop that combine thermodynamic and oxygen isotope fractionation modelling for multi-rock open systems. The strategy involves a robust petrological model performing on-the-fly Gibbs energy minimizations coupled to an oxygen fractionation model for a given chemical and isotopic bulk rock composition; both models are based on internally consistent databases. This approach is applied to subduction zone metamorphism to predict the possible range of δ18O values for stable phases and aqueous fluids at various pressure (P) and temperature (T) conditions in the subducting slab. The modelled system is composed of a mafic oceanic crust with a sedimentary cover of known initial chemical composition and bulk δ18O. The evolution of mineral assemblages and δ18O values of each phase is calculated along a defined P–T path for two typical compositions of basalts and sediments. In a closed system, the dehydration reactions, fluid loss and mineral fractionation produce minor to negligible variations (i.e. within 1 ‰) in the bulk δ18O values of the rocks, which are likely to remain representative of the protolith composition. In an open system, fluid–rock interaction may occur (1) in the metasediment, as a consequence of infiltration of the fluid liberated by dehydration reactions occurring in the metamorphosed mafic oceanic crust, and (2) in the metabasalt, as a consequence of infiltration of an external fluid originated by dehydration of underlying serpentinites. In each rock type, the interaction with external fluids may lead to shifts in δ18O up to 1 order of magnitude larger than those calculated for closed systems. Such variations can be detected by analysing in situ oxygen isotopes in key metamorphic minerals such as garnet, white mica and quartz. The simulations show that when the water released by the slab infiltrates the forearc mantle wedge, it can cause extensive serpentinization within fractions of 1 Myr and significant oxygen isotope variation at the interface. The approach presented here opens new perspectives for tracking fluid pathways in subduction zones, to distinguish porous from channelled fluid flows, and to determine the P–T conditions and the extent of fluid–rock interaction.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-09
    Description: Epidote – here defined as minerals belonging to the epidote–clinozoisite solid solution – is a low-μ (μ=238U/204Pb) mineral occurring in a variety of geological environments and participating in many metamorphic reactions that is stable throughout a wide range of pressure–temperature conditions. Despite containing fair amounts of U, its use as a U−Pb geochronometer has been hindered by the commonly high contents of initial Pb, with isotopic compositions that cannot be assumed a priori. We present a U−Pb geochronology of hydrothermal-vein epidote spanning a wide range of Pb (3.9–190 µg g−1), Th (0.01–38 µg g−1), and U (2.6–530 µg g−1) contents and with μ values between 7 and 510 from the Albula area (eastern Swiss Alps), from the Grimsel area (central Swiss Alps), and from the Heyuan fault (Guangdong Province, China). The investigated epidote samples show appreciable fractions of initial Pb contents (f206=0.7–1.0) – i.e., relative to radiogenic Pb – that vary to different extents. A protocol has been developed for in situ U−Pb dating of epidote by spot-analysis laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a magmatic allanite as the primary reference material. The suitability of the protocol and the reliability of the measured isotopic ratios have been ascertained by independent measurements of 238U/206Pb and 207Pb/206Pb ratios, respectively, with quadrupole and multicollector ICP-MS applied to epidote micro-separates digested and diluted in acids. For age calculation, we used the Tera–Wasserburg (207Pb/206Pb versus 238U/206Pb) diagram, which does not require corrections for initial Pb and provides the initial 207Pb/206Pb ratio. Petrographic and microstructural data indicate that the calculated ages date the crystallization of vein epidote from a hydrothermal fluid and that the U−Pb system was not reset to younger ages by later events. Vein epidote from the Albula area formed in the Paleocene (62.7±3.0 Ma) and is related to Alpine greenschist-facies metamorphism. The Miocene (19.2±4.3 and 16.9±3.7 Ma) epidote veins from the Grimsel area formed during the Handegg deformation phase (22–17 Ma) of the Alpine evolution of the Aar Massif. Identical initial 207Pb/206Pb ratios reveal homogeneity in Pb isotopic compositions of the fluid across ca. 100 m. Vein epidote from the Heyuan fault is Cretaceous in age ( 107.2±8.9 Ma) and formed during the early movements of the fault. In situ U−Pb analyses of epidote returned reliable ages of otherwise undatable epidote–quartz veins. The Tera–Wasserburg approach has proven pivotal for in situ U−Pb dating of epidote, and the decisive aspect for low age uncertainties is the variability in intra-sample initial Pb fractions.
    Print ISSN: 2628-3697
    Electronic ISSN: 2628-3719
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...