ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-05-13
    Description: We quantify the long-term predictability of global mean daily temperature data by means of the Rényi entropy of second order K2. We are interested in the yearly amplitude fluctuations of the temperature. Hence, the data are low-pass filtered. The obtained oscillatory signal has a more or less constant frequency, depending on the geographical coordinates, but its amplitude fluctuates irregularly. Our estimate of K2 quantifies the complexity of these amplitude fluctuations. We compare the results obtained for the CRU data set (interpolated measured temperature in the years 1901-2003 with 0.5° resolution, Mitchell et al., 2005)with the ones obtained for the temperature data from a coupled ocean-atmosphere global circulation model (AOGCM, calculated at DKRZ). Furthermore, we compare the results obtained by means of K2 with the linear variance of the temperature data.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-05
    Description: Thanks to the installation of a temporary seismic network, a microseismicity study has been conducted in the Sulmona area (Abruzzo, Italy) with the aim of increasing the knowledge of seismogenic potential of existing active faults. In this work the first 7 months (from 27 May to 31 December 2009) of recorded data have been analysed over a total period of acquisition of about 30 months. Using a semi-automatic procedure, more than 800 local earthquakes have been detected, which highlights the previously unknown background seismicity. About 70% of these events have been relocated using a 1-D velocity model estimated specifically for the Sulmona area. The integration of temporary network data with all the other data available in the region enables us to obtain a statistically more robust data set of earthquake locations. Both the final hypocentral solutions and phase pickings are released as a supplement; an appendix also describes phase readings' quality with respect to weighting schemes used by location algorithms. Local magnitude values of the newly detected events range between −1.5 and 3.7 and the completeness magnitude for the Sulmona area during the study period is about 1.1. Duration magnitude coefficients have been estimated as well for comparison/integration purposes. The local Gutenberg–Richter relationship, estimated from the microseismic data, features a low b value, tentatively suggesting that the Sulmona area may be currently undergoing high-stress conditions, in agreement with other recent studies. The time–space distribution of the seismic activity with respect to the known active faults as well the seismogenic layer thickness are preliminarily investigated.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-29
    Description: Thanks to the installation of a temporary seismic network, a microseismicity study has been conducted in the Sulmona area (Abruzzo, Italy) with the aim of increasing the knowledge of seismogenic potential of existing active faults. In this work the first seven months (from 27 May to 31 December 2009) of recorded data have been analysed, over a total period of acquisition of about 30 months. Using a semi-automatic procedure, more than 800 local earthquakes has been detected, which highlight the background seismicity previously unknown. About 70% of these events have been relocated using a 1-D velocity model estimated specifically for the Sulmona area. Phase readings quality is checked and discussed, with respect to weighting schemes used by location algorithms, too. The integration of temporary network data with all the other data available in the region enable us to obtain a statistically more robust dataset of earthquake locations. Both the final hypocentral solutions and phase pickings are released as online Supplement. Local magnitude values of the newly detected events ranges between −1.5 and 3.7 and the completeness magnitude for the Sulmona area during the study period is about 1.1. Duration magnitude coefficients have been estimated as well, for comparison/integration purposes. Local Gutenberg–Richter relationship, estimated from the microseismic data, features low b value, possibly suggesting that the Sulmona area is currently undergoing high stress, in agreement with other recent studies. The time-space distribution of the seismic activity with respect to the known active faults, as well the seismogenic layer thickness, are preliminarily investigated.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-15
    Description: During the 2012 seismic sequence of Emilia region (Northern Italy), the earthquake ground motion in the epicentral area featured longer duration and higher velocity than those estimated by empirical-based prediction equations typically adopted in Italy. In order to explain these anomalies, we (1) build up a structural and geophysical 3D digital model of the crustal sector involved in the sequence, (2) reproduce the earthquake ground motion at some seismological stations through physics-based numerical simulations and (3) compare the observed recordings with the simulated ones. In this way we investigate how the earthquake ground motion in the epicentral area is influenced by local stratigraphy and geological structure buried under the Po Plain alluvium. Our study area covers approximately 5000 km2 and extends from the Po river right bank to the Northern Apennines morphological margin in N-S direction, and between the two chief towns of Reggio Emilia and Ferrara in W-E direction, involving a crustal volume with 20 km of thickness. We set up the 3D model by using already published geological and geophysical data, with a detail corresponding to a map at scale 1:250 000. The model depicts the stratigraphic and tectonic relationships of the main geological formations, the known faults and the spatial pattern of the seismic properties. Being a digital vector structure, the 3D model can be easily modified or refined locally for future improvements or applications. We exploited high performance computing to perform numerical simulations of the seismic wave propagation in the frequency range up to 2 Hz. In order to get rid of the finite source effects and validate the model response, we choose to reproduce the ground motion related to two moderate-size aftershocks of the 2012 Emilia sequence that were recorded by a large number of stations. The obtained solutions compare very well to the recordings available at about 30 stations, in terms of peak ground velocity and signal duration. Snapshots of the simulated wavefield allow us to explain the exceptional length of the observed ground motion as due to surface waves overtones that are excited in the alluvial basin by the buried ridge of the Mirandola anticline. Physics-based simulations using realistic 3D geo-models show eventually to be effective for assessing the local seismic response and the seismic hazard in geologically complex areas.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...