ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-06
    Description: Permafrost distribution in rock walls surrounding receding glaciers is an important factor in rock stability and rock wall retreat. We investigated bedrock permafrost distribution in the Dachstein Massif, Austria, reaching up to 2995 m a.s.l. The occurrence, thickness and thermal regime of permafrost at this partly glaciated mountain massif are scarcely known. We applied a multi-method approach with continuous ground surface and near-surface temperature monitoring (GST), measurement of the bottom temperature of the winter snow cover (BTS), electrical resistivity tomography (ERT), airborne photogrammetry, topographic maps, visual observations, and field mapping. Our research focused on several steep rock walls consisting of massive limestone above receding glaciers exposed to different slope aspects at elevations between ca. 2600 and 2700 m a.s.l. We aimed to quantify the distribution and conditions of bedrock permafrost particularly at the transition zone between the present glacier surface and the adjacent rock walls. According to our ground temperature data, permafrost is mainly found at north-facing rock walls. At south-east-facing rock walls, permafrost is probable only in very favourable cold conditions at radiation-sheltered higher elevations (〉2700 m a.s.l.). ERT measurements reveal high resistivities (〉30 000 Ω m) at ≥1.5 m depth at north-exposed slopes (highest values 〉100 kΩ m). Deducted from laboratory studies and additional small-scale ERT measurements, these values indicate permafrost existence. Permafrost bodies were found at several rock walls independent of investigated slope orientation; however, particularly large permafrost bodies were found at north-exposed sites. Furthermore, at vertical survey lines, a pronounced imprint of the former Little Ice Age (LIA) ice margin was detected. Resistivities above and below the LIA line are markedly different. At the LIA glacier surface, the highest resistivities and lowest active-layer thicknesses were observed. The active-layer thickness increases downslope from this zone. Permafrost below the LIA line could be due to permafrost aggradation or degradation; however, the spatial patterns of frozen rock point to permafrost aggradation following glacier surface lowering or retreat. This finding is significant for permafrost and cirque erosion studies in terms of frost-influence weathering in similar high-mountain settings.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-09
    Description: The hyporheic zone is a hotspot of biogeochemical turnover and nutrient removal in running waters. However, nutrient fluxes through the hyporheic zone are highly variable in time and locally heterogeneous. Resulting from the lack of adequate methodologies to obtain representative long-term measurements, our quantitative knowledge on transport and turnover in this important transition zone is still limited.In groundwater systems passive flux meters, devices which simultaneously detect horizontal water and solute flow through a screen well in the subsurface, are valuable tools for measuring fluxes of target solutes and water through those ecosystems. Their functioning is based on accumulation of target substances on a sorbent and concurrent displacement of a resident tracer which is previously loaded on the sorbent.Here we evaluate the applicability of this methodology for investigating water and nutrient fluxes in hyporheic zones. Based on laboratory experiments we developed hyporheic passive flux meters (HPFMs) with a length of 50 cm which were separated in 5–7 segments allowing for vertical resolution of horizontal nutrient and water transport. The HPFMs were tested in a 7 day field campaign including simultaneous measurements of oxygen and temperature profiles and manual sampling of pore water. The results highlighted the advantages of the novel method: with HPFMs, cumulative values for the average N and P flux during the complete deployment time could be captured. Thereby the two major deficits of existing methods are overcome: first, flux rates are measured within one device instead of being calculated from separate measurements of water flow and pore-water concentrations; second, time-integrated measurements are insensitive to short-term fluctuations and therefore deliver more representable values for overall hyporheic nutrient fluxes at the sampling site than snapshots from grab sampling. A remaining limitation to the HPFM is the potential susceptibility to biofilm growth on the resin, an issue which was not considered in previous passive flux meter applications. Potential techniques to inhibit biofouling are discussed based on the results of the presented work. Finally, we exemplarily demonstrate how HPFM measurements can be used to explore hyporheic nutrient dynamics, specifically nitrate uptake rates, based on the measurements from our field test. Being low in costs and labour effective, many flux meters can be installed in order to capture larger areas of river beds. This novel technique has therefore the potential to deliver quantitative data which are required to answer unsolved questions about transport and turnover of nutrients in hyporheic zones.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-22
    Description: Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air-water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions. Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in four rivers of the Nam Theun watershed at nine stations in the reservoir (vertical profiles) and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012–2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of C fuelling emissions and we show that the drawdown area contributes, depending on the year, from 50 % to 75 % of total annual gross emissions in this flat and shallow reservoir. This overlooked pathway in terms of gross emissions would require an in-depth evaluation for the soil OM and vegetation dynamics to evaluate the actual contribution of this area in terms of net modification of gas exchange in the footprint of the reservoir, and how it could evolve in the future.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-29
    Description: Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3−), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke (Germany) river continuum from three headwaters draining 1–3 km2 catchments to two downstream reaches representing spatially integrated signals from 184–456 km2 catchments. Three headwater catchments were selected as archetypes of the main landscape units (land use  ×  lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3−, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contributions from point sources. The seasonal dynamics for NO3− were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3− contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3− was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal (high SRP during summer low flow), which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to jointly investigate land-to-stream and in-stream transport, and transformation processes.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-10
    Description: Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke (Germany) river continuum from headwaters draining 1–3 km2 catchments to downstream reaches representing spatially integrated signals from 184–456 km2 catchments. Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal (high SRP during summer low flow), which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-02-13
    Description: Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise from natural or anthropogenic causes. Empirical quality of river water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected river water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2005). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties, measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerably to the overall uncertainty of river water quality data. Temporal autocorrelation of river water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments (500–3000 km2) reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended sediments none of the methods investigated produced very reliable load estimates when weekly concentrations data were used. Uncertainties associated with loads estimates based on infrequent samples will decrease with increasing size of rivers.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-09-21
    Description: Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise form natural or anthropogenic causes. Empirical quality of surface water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected surface water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2006). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability's within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerable to the overall uncertainty of surface water quality data. Temporal autocorrelation of surface water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended sediments none of the methods investigated produced very reliable load estimates when weekly concentrations data were used. Uncertainties associated with loads estimates based on infrequent samples will decrease with increasing size of rivers.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-26
    Description: In the present study, we measured CH4 ebullition and diffusion with funnels and floating chambers in the footprint of an eddy-covariance system measuring CH4 emissions at high frequency (30 mn) in the Nam Theun 2 Reservoir, a recently impounded (in 2008) subtropical hydroelectric reservoir located in Lao PDR, southeast Asia. The EC fluxes were very consistent with the sum of the two terms measured independently (diffusive fluxes + ebullition = EC fluxes), indicating that the EC system picked-up both diffusive fluxes and ebullition from the reservoir. The EC system permitted to evidence a diurnal bimodal pattern of CH4 emissions anti-correlated with atmospheric pressure. During daytime, a large atmospheric pressure drop triggers CH4 ebullition (up to 100 mmol m–2 d–1) whereas at night, a more moderate peak of CH4 emission was recorded. As a consequence, fluxes during daytime were twice higher than during nighttime. A total of 4811 measurements of CH4 ebullition with submerged funnels at a weekly/fortnightly frequency were performed. The data set covers a water depth ranging from 0.4 to 16 m, and all types of flooded ecosystems. This dataset allowed to determine that ebullition depends mostly on water level change among many other variables tested. On average, ebullition was 8.5 ± 10.5 mmol m–2 d–1 (10–90 percentile range: 0.03–21.5 mmol m–2 d–1) and ranged from 0–201.7 mmol m–2 d–1. An artificial neural network model could explain up to 45% of variability of ebullition using total static pressure (sum of hydrostatic and atmospheric pressure), variations in the water level and atmospheric pressure, and bottom temperature as inputs. This model allowed extrapolation of CH4 ebullition at the reservoir scale and performing gap-filling over four years. Our results clearly showed a very high seasonality: 50% of the yearly CH4 ebullition occurs within four months of the warm dry season. Overall, ebullition contributed 60–80% of total emissions from the surface of the reservoir (disregarding downstream emissions) suggesting that ebullition is a major pathway in young hydroelectric reservoirs in the tropics.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-20
    Description: Inland waters in general and specifically freshwater reservoirs are recognized as source of CH4 to the atmosphere. Although the diffusion at the air–water interface is the most studied pathway, its spatial and temporal variations are poorly documented. We measured fortnightly CH4 concentrations and physico-chemical parameters at nine stations in a subtropical monomictic reservoir which was flooded in 2008 (Nam Theun 2 Reservoir, Lao PDR). Based on these results, we quantified CH4 storage in the water column and diffusive fluxes from June 2009 to December 2012. We also compared emissions with aerobic methane oxidation calculated from Deshmukh et al. (2015). In this monomictic reservoir, the seasonal variations of CH4 concentration and storage were highly dependant of the thermal stratification. Hypolimnic CH4 concentration and CH4 storage reached their maximum in the warm dry season (WD) when the reservoir was stratified. They decreased during the warm wet (WW) season and reached its minimum after the reservoir overturned in the cool dry season (CD). The sharp decreases of the CH4 storage were concomitant with sporadic extreme diffusive fluxes (up to 200 mmol m−2 d−1). These hot moments of emissions occurred mostly in the inflow region in the WW season and during the overturn in the CD season in the area of the reservoir that has the highest CH4 storage. Although they corresponded to less than 10 % of the observations, these CH4 extreme emissions (〉 5 mmol m−2 d−1) contributed up to 50 % of total annual emissions by diffusion. Based on our fortnightly monitoring, we determined that accurate estimation of the emissions can be determined from measurements made at least at a monthly frequency. During the transition between the WD and WW seasons, a new hotspot of emissions was identified upstream of the water intake where diffusive fluxes peaked at 600 mmol m−2 d−1 in 2010 down to 200 mmol m−2 d−1 in 2012. In the CD season, diffusive fluxes from this area were the lowest observed at the reservoir surface. Emissions from this area contributed 15–25 % to total annual emissions although they occur on a surface area representative of less than 1 % of the total reservoir surface. We highly recommend measurements of diffusive fluxes around water intakes in order to evaluate if such results can be generalized.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-20
    Description: Methane (CH4) emissions from hydroelectric reservoirs could represent a significant fraction of global CH4 emissions from inland waters and wetlands. Although CH4 emissions downstream of hydroelectric reservoirs are known to be potentially significant, these emissions are poorly documented in recent studies. We report the first quantification of emissions downstream of a subtropical monomictic reservoir. The Nam Theun 2 Reservoir (NT2R), located in Lao People's Democratic Republic, was flooded in 2008 and commissioned in April 2010. This reservoir is a trans-basin diversion reservoir which releases water to two downstream streams: the Nam Theun River below the dam and an artificial channel downstream of the powerhouse and a regulating pond that diverts the water from the Nam Theun watershed to the Xe Bangfai watershed. We quantified downstream emissions during the first four years after impoundment (2009–2012) on the basis of a high temporal (weekly to fortnightly) and spatial (23 stations) resolution of the monitoring of CH4 concentration. Before the commissioning of NT2R, downstream emissions were dominated by a very significant degassing at the dam site resulting from the occasional spillway discharge for controlling the water level in the reservoir. After the commissioning, downstream emissions were dominated by degassing which occurred mostly below the powerhouse. Overall, downstream emissions decreased from 10 Gg CH4 y−1 after the commissioning to 2 Gg CH4 y−1 four years after impoundment. The downstream emissions contributed only 10 to 30 % of total CH4 emissions from the reservoir during the study. Most of the downstream emissions (80 %) occurred within 2–4 months during the transition between the warm dry season (WD) and the warm wet season (WW) when the CH4 concentration in hypolimnic water is maximum (up to 1000 μmol L−1) and downstream emissions are negligible for the rest of the year. Emissions downstream of NT2R are also lower than expected because of the design of the water intake. A significant fraction of the CH4 that should have been transferred and emitted downstream of the powerhouse is emitted at the reservoir surface because of the artificial turbulence generated around the water intake. The positive counterpart of this artificial mixing is that it allows O2 diffusion down to the bottom of the water column enhancing aerobic methane oxidation and it subsequently lowering downstream emissions by at least 40 %.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...