ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-17
    Description: Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon source was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-10
    Description: Rewetting of long-term drained fens often results in the formation of eutrophic shallow lakes with an average water depth of less than 1 m. This is accompanied by a fast vegetation shift from cultivated grasses via submerged hydrophytes to helophytes. As a result of rapid plant dying and decomposition, these systems are highly-dynamic wetlands characterised by a high mobilisation of nutrients and elevated emissions of CO2 and CH4. However, the impact of specific plant species on these phenomena is not clear. Therefore we investigated the CO2 and CH4 production due to the subaqueous decomposition of shoot biomass of five selected plant species which represent different rewetting stages (Phalaris arundinacea, Ceratophyllum demersum, Typha latifolia, Phragmites australis, and Carex riparia) during a 154 day mesocosm study. Beside continuous gas flux measurements, we performed bulk chemical analysis of plant tissue, including carbon, nitrogen, phosphorus, and plant polymer dynamics. Plant specific mass losses after 154 days ranged from 25 (P. australis) to 64% (C. demersum). Substantial differences were found for the CH4 production with highest values from decomposing C. demersum (0.4 g CH4 kg−1 dry mass day) that were about 70 times higher than CH4 production from C. riparia. Thus, we found a strong divergence between mass loss of the litter and methane production during decomposition. If C. demersum as a hydrophyte is included in the statistical analysis solely nutrient contents (nitrogen and phosphorus) explain varying GHG production of the different plant species while lignin and polyphenols demonstrate no significant impact at all. Taking data of annual biomass production as important carbon source for methanogens into account, high CH4 emissions can be expected to last several decades as long as inundated and nutrient-rich conditions prevail. Different restoration measures like water level control, biomass extraction and top soil removal are discussed in the context of mitigation of CH4 emissions from rewetted fens.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-14
    Description: Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon sink was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest, whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-24
    Description: Rewetting of long-term drained fens often results in the formation of eutrophic shallow lakes with an average water depth of less than 1 m. This is accompanied by a fast vegetation shift from cultivated grasses via submerged hydrophytes to helophytes. As a result of rapid plant dying and decomposition, these systems are highly dynamic wetlands characterised by a high mobilisation of nutrients and elevated emissions of CO2 and CH4. However, the impact of specific plant species on these phenomena is not clear. Therefore we investigated the CO2 and CH4 production due to the subaqueous decomposition of shoot biomass of five selected plant species which represent different rewetting stages (Phalaris arundinacea, Ceratophyllum demersum, Typha latifolia, Phragmites australis and Carex riparia) during a 154 day mesocosm study. Beside continuous gas flux measurements, we performed bulk chemical analysis of plant tissue, including carbon, nitrogen, phosphorus and plant polymer dynamics. Plant-specific mass losses after 154 days ranged from 25% (P. australis) to 64% (C. demersum). Substantial differences were found for the CH4 production with highest values from decomposing C. demersum (0.4 g CH4 kg−1 dry mass day) that were about 70 times higher than CH4 production from C. riparia. Thus, we found a strong divergence between mass loss of the litter and methane production during decomposition. If C. demersum as a hydrophyte is included in the statistical analysis solely nutrient contents (nitrogen and phosphorus) explain varying greenhouse gas production of the different plant species while lignin and polyphenols demonstrate no significant impact at all. Taking data of annual biomass production as important carbon source for methanogens into account, high CH4 emissions can be expected to last several decades as long as inundated and nutrient-rich conditions prevail. Different restoration measures like water level control, biomass extraction and top soil removal are discussed in the context of mitigation of CH4 emissions from rewetted fens.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...