ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-05
    Description: Cloud optical properties in the trade winds over the Eastern Caribbean Sea have been shown to be sensitive to cloud condensation nuclei (CCN) concentrations. The objective of the current study was to investigate the CCN properties in the marine boundary layer (MBL) in the Eastern Caribbean, in order to assess the respective roles of organic species, long-range transported mineral dust, and sea salt particles. Measurements were carried out in June–July 2013, on the East Coast of Barbados and included CCN number concentrations, particle number size distributions, as well as off-line analysis of sampled particulate matter (PM) and sampled accumulation mode particles for an investigation of composition and mixing state with transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX). During most of the campaign, significant mass concentrations of long-range transported mineral dust was present in the PM, and influence from local island sources can be ruled out. The CCN and particle number concentrations were similar to what can be expected in pristine marine environments. The hygroscopicity parameter κ was inferred, and values in the range 0.2–0.5 were found during most of the campaign, with similar values for the Aitken and the accumulation mode. The accumulation mode particles studied with TEM were dominated by non-refractory material, and concentrations of mineral dust, sea salt, and soot were too small to influence the CCN properties. It is highly likely that the CCN were dominated by a mixture of sulphate species and organic compounds.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-10
    Description: Dust from Africa strongly perturbs the radiative balance over the Atlantic, with emissions that are highly variable from year to year. We show that the aerosol optical depth (AOD) of dust over the mid-Atlantic observed by the AVHRR satellite has decreased by approximately 10% per decade from 1982–2008. This downward trend persists through both winter and summer close to source and is also observed in dust surface concentration measurements down-wind in Barbados during summer. The GEOS-Chem model, driven with MERRA re-analysis meteorology and using a new dust source activation scheme, reproduces the observed trend and is used to quantify the factors contributing to this trend and the observed variability from 1982 to 2008. We find that changes in dustiness over the East mid-Atlantic are almost entirely mediated by a reduction in surface winds over dust source regions in Africa and are not directly linked with changes in land-use or vegetation cover. The global mean all-sky direct radiative effect (DRE) of African dust is −0.18 W m−2 at top of atmosphere, accounting for 46% of the global dust total, with a regional DRE of −7.4 ± 1.5 W m−2 at the surface of the mid-Atlantic, varying by over 6.0 W m−2 from year to year, with a trend of +1.3 W m−2 per decade. These large inter-annual changes and the downward trend highlight the importance of climate feedbacks on natural aerosol abundance. Our analysis of the CMIP5 models suggests that the decreases in the indirect anthropogenic aerosol forcing over the North Atlantic over past decades may be responsible for the observed climate-response in African dust, indicating a potential amplification of anthropogenic aerosol radiative impacts in the Atlantic via natural mineral dust aerosol.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-26
    Description: Aerosol variations and trends over different land and ocean regions during 1980–2009 are analyzed with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and observations from multiple satellite sensors and ground-based networks. Excluding time periods with large volcanic influences, the tendency of aerosol optical depth (AOD) and surface concentration over polluted land regions is consistent with the anthropogenic emission changes. The largest reduction occurs over Europe, and regions in North America and Russia also exhibit reductions. On the other hand, East Asia and South Asia show AOD increases, although relatively large amount of natural aerosols in Asia makes the total changes less directly connected to the pollutant emission trends. Over major dust source regions, model analysis indicates that the dust emissions over the Sahara and Sahel respond mainly to the near-surface wind speed, but over Central Asia they are largely influenced by ground wetness. The decreasing dust trend in the tropical North Atlantic is most closely associated with the decrease of Sahel dust emission and increase of precipitation over the tropical North Atlantic, likely driven by the sea surface temperature increase. Despite significant regional trends, the model-calculated global annual average AOD shows little changes over land and ocean in the past three decades, because opposite trends in different regions cancel each other in the global average. This highlights the need for regional-scale aerosol assessment, as the global average value conceals regional changes, and thus is not sufficient for assessing changes in aerosol loading.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-14
    Description: Since the 1980s, emissions of SO2 and NOx (NO + NO2) from anthropogenic sources in the United States (US) and Europe have decreased significantly suggesting that the export of oxidized S and N compounds from surrounding continents to the atmosphere overlying North Atlantic Ocean (NAO) has also decreased. The chemical compositions of aerosols and precipitation sampled daily on Bermuda (32.27° N, 64.87° W) from 1989 to 1997 and from 2006 to 2009 were evaluated to quantify the magnitudes, significance, and implications of associated tends in atmospheric composition. The chemical data were stratified based on FLEXPART retroplumes into four discrete transport regimes: westerly flow from the eastern North America (NEUS/SEUS); easterly trade-wind flow from northern Africa and the subtropical NAO (Africa); long, open-ocean, anticyclonic flow around the Bermuda High (Oceanic); and transitional flow from the relatively clean open ocean to the polluted northeastern US (North). Based on all data, annual average concentrations of non-sea-salt (nss) SO42- associated with aerosols and annual VWA concentrations in precipitation decreased significantly (by 22 and 49%, respectively) whereas annual VWA concentrations of NH4+ in precipitation increased significantly (by 70%). Corresponding trends in aerosol and precipitation NO3- and of aerosol NH4+ were insignificant. Nss SO42- in precipitation under NEUS/SEUS and Oceanic flow decreased significantly (61% each) whereas corresponding trends in particulate nss SO42- under both flow regimes were insignificant. Trends for precipitation were driven in part by decreasing emissions of SO2 over upwind continents and associated decreases in anthropogenic contributions to nss SO42- concentrations. Under NEUS/SEUS and Oceanic flow, the ratio of anthropogenic to biogenic contributions to to nss SO42- in the column scavenged by precipitation were relatively greater than those in near surface aerosol, which implies that, for these flow regimes, precipitation is a better indicator of overall anthropogenic impacts on the lower troposphere. Particulate nss SO42- under African flow also decreased significantly (34%) whereas the corresponding decrease in nss SO42- associated with precipitation was marginally insignificant. We infer that these trends were driven in part by reductions in the emissions and transport of oxidized S compounds from Europe. The lack of significant trends in NO3- associated with aerosols and precipitation under NEUS/SEUS flow is notable in light of the large decrease (39%) in NOx emissions in the US over the period of record. Rapid chemical processing of oxidized N in marine air contributed to this lack of correspondence. Decreasing ratios of nss SO42- to NH4+ and the significant decreasing trend in precipitation acidity (37%) indicate that the total amount of acidity in the multiphase gas-aerosol system in the western NAO troposphere decreased over the period of record. Decreasing aerosol acidities would have shifted the phase partitioning of total NH3 (NH3 + particulate NH4+) towards the gas phase thereby decreasing the atmospheric lifetime of total NH3 against wet plus dry deposition. The trend of increasing NH4+ in precipitation at Bermuda over the period of record suggests that NH3 emissions from surrounding continents also increased. Decreasing particulate nss SO42- in near-surface air under NEUS/SEUS flow over the period of record suggests a lower limit for net warming in the range of 0.1–0.3 W m-2 resulting from the decreased shortwave scattering and absorption by nss SO42- and associated aerosol constituents.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-24
    Description: Desert dust aerosols influence air quality and climate on a global scale, including radiative forcing, cloud properties and carbon dioxide modulation through ocean fertilisation. North Africa is the largest and most active dust source worldwide; however, the mechanisms modulating year-to-year variability in Saharan dust export in summer remains unclear. In this season, enhanced dust mobilization in the hyper-arid Sahara results in maximum dust impacts throughout the North Atlantic. The objective of this study is to identify the relationship between the long term interannual variability in Saharan dust export in summer and large scale meteorology in western North Africa. We address this issue by analysing ~25 yr (1987–2012) dust concentrations at the high altitude Izaña observatory (2373 m a.s.l.) in Tenerife Island, satellite and meteorological reanalysis data. Because in summer Saharan dust export occurs at altitudes 1–5 km, we paid special attention to the summer meteorological scenario in the 700 hPa standard level, characterised by a high over the subtropical Sahara and lower geopotential heights over the tropics; we measured the intensity of this low-high dipole like pattern in terms of the North AFrican Dipole Index (NAFDI): the difference of the 700 hPa geopotential heights anomalies averaged over central Morocco (subtropic) and over Bamako region (tropic). The correlations we found between the 1987–2012 NAFDI with dust at Izaña, satellite dust observations and meteorological re-analysis data, indicates that increase in the NAFDI (i) results in higher wind speeds at the north of the Inter-Tropical Convergence Zone which enhances dust export over the subtropical North Atlantic, (ii) influences on the size distribution of exported dust particles, increasing the load of coarse dust and (iii) are associated with higher rainfall over tropical North Africa and the Sahel. Because of the North African dipole modulation, inter-annual variability in Saharan dust export is correlated with monsoon rainfall in the Sahel. High values of the NAFDI enhance dust export at subtropical latitudes. Our results suggest that long term variability in Saharan dust export may be influenced by global oscillations in the climate of the tropics and subtropics and that this may have influenced dust transport pathways in the last decades.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-05
    Description: NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 μm aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1° × 1° resolution versus corresponding/co-incident 0.550 μm AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 μm extinction coefficient are compared with 0.523/0.532 μm ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1° × 1° bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach ±20%. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at these latitudes. Root mean square deviation between CALIOP and NAAPS varies between 0.1 and 0.3 globally during both day/night. Averaging of CALIOP along-track AOD data points within a single NAAPS grid bin improves correlation and RMSD, though day/night and land/ocean biases persist and are believed systematic. Vertical profiles of extinction coefficient derived in the Caribbean compare well with ground-based lidar observations, though potentially anomalous selection of a priori lidar ratios for CALIOP retrievals is likely inducing some discrepancies. Mean effective aerosol layer top heights are stable between day and night, indicating consistent layer-identification diurnally, which is noteworthy considering the potential limiting effects of ambient solar noise during day.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-13
    Description: Since the 1980s, emissions of SO2 and NOx (NO + NO2) from anthropogenic sources in the United States (US), Canada, and Europe have decreased significantly suggesting that the export of oxidized S and N compounds from surrounding continents to the atmosphere overlying the North Atlantic Ocean (NAO) has also decreased. The chemical compositions of aerosols and precipitation sampled daily on Bermuda (32.27° N, 64.87° W) from 1989 to 1997 and from 2006 to 2009 were evaluated to quantify the magnitudes, significance, and implications of associated tends in atmospheric composition. The chemical data were stratified based on FLEXPART (FLEXible PARTicle dispersion model) retroplumes into four discrete transport regimes: westerly flow from eastern North America (NEUS/SEUS); easterly trade-wind flow from northern Africa and the subtropical NAO (Africa); long, open-ocean, anticyclonic flow around the Bermuda High (Oceanic); and transitional flow from the relatively clean open ocean to the polluted eastern North America (North). Based on all data, annual average concentrations of non-sea-salt (nss) SO42– associated with aerosols and annual volume-weighted-average (VWA) concentrations in precipitation decreased significantly (by 22% and 49%, respectively) whereas annual VWA concentrations of NH4+ in precipitation increased significantly (by 70%). Corresponding trends in aerosol and precipitation NO3– and of aerosol NH4+ were insignificant. Nss SO42– in precipitation under NEUS/SEUS and Oceanic flow decreased significantly (61% each) whereas corresponding trends in particulate nss SO42– under both flow regimes were insignificant. Trends in precipitation composition were driven in part by decreasing emissions of SO2 over upwind continents and associated decreases in anthropogenic contributions to nss SO42– concentrations. Under NEUS/SEUS and Oceanic flow, the ratio of anthropogenic to biogenic contributions to nss SO42– in the column scavenged by precipitation were relatively greater than those in near surface aerosol, which implies that, for these flow regimes, precipitation is a better indicator of overall anthropogenic impacts on the lower troposphere. Particulate nss SO42– under African flow also decreased significantly (34%) whereas the corresponding decrease in nss SO42– associated with precipitation was insignificant. We infer that these trends were driven in part by reductions in the emissions and transport of oxidized S compounds from Europe. The lack of significant trends in NO3– associated with aerosols and precipitation under NEUS/SEUS flow is notable in light of the large decrease (37%) in NOx emissions in the US and Canada over the period of record. Rapid chemical processing of oxidized N in marine air contributed to this lack of correspondence. Decreasing ratios of nss SO42– to NH4+ and the significant decreasing trend in precipitation acidity (37%) indicate that the total amount of acidity in the multiphase gas–aerosol system in the western NAO troposphere decreased over the period of record. Decreasing aerosol acidities would have shifted the phase partitioning of total NH3 (NH3 + particulate NH4+ towards the gas phase thereby decreasing the atmospheric lifetime of total NH3 against wet plus dry deposition. The trend of increasing NH4+ in precipitation at Bermuda over the period of record suggests that NH3 emissions from surrounding continents also increased. Decreasing particulate nss SO42– in near-surface air under NEUS/SEUS flow over the period of record implies that the corresponding shortwave scattering and absorption by nss S and associated aerosols constituents also decreased. These changes in radiative transfer suggest a corresponding lower limit for net warming over the period in the range of 0.1–0.3 W m–2.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-10
    Description: Aerosol variations and trends over different land and ocean regions from 1980 to 2009 are analyzed with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and observations from multiple satellite sensors and available ground-based networks. Excluding time periods with large volcanic influence, aerosol optical depth (AOD) and surface concentration over polluted land regions generally vary with anthropogenic emissions, but the magnitude of this association can be dampened by the presence of natural aerosols, especially dust. Over the 30-year period in this study, the largest reduction in aerosol levels occurs over Europe, where AOD has decreased by 40–60% on average and surface sulfate concentrations have declined by a factor of up to 3–4. In contrast, East Asia and South Asia show AOD increases, but the relatively high level of dust aerosols in Asia reduces the correlation between AOD and pollutant emission trends. Over major dust source regions, model analysis indicates that the change of dust emissions over the Sahara and Sahel has been predominantly driven by the change of near-surface wind speed, but over Central Asia it has been largely influenced by the change of the surface wetness. The decreasing dust trend in the North African dust outflow region of the tropical North Atlantic and the receptor sites of Barbados and Miami is closely associated with an increase of the sea surface temperature in the North Atlantic. This temperature increase may drive the decrease of the wind velocity over North Africa, which reduces the dust emission, and the increase of precipitation over the tropical North Atlantic, which enhances dust removal during transport. Despite significant trends over some major continental source regions, the model-calculated global annual average AOD shows little change over land and ocean in the past three decades, because opposite trends in different land regions cancel each other out in the global average, and changes over large open oceans are negligible. This highlights the necessity for regional-scale assessment of aerosols and their climate impacts, as global-scale average values can obscure important regional changes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-10
    Description: We have studied the relationship between the long-term interannual variability in large-scale meteorology in western North Africa – the largest and most active dust source worldwide – and Saharan dust export in summer, when enhanced dust mobilization in the hyper-arid Sahara results in maximum dust impacts throughout the North Atlantic. We address this issue by analyzing 28 years (1987–2014) of summer averaged dust concentrations at the high-altitude Izaña observatory (~ 2400 m a.s.l.) on Tenerife, and satellite and meteorological reanalysis data. The summer meteorological scenario in North Africa (aloft 850 hPa) is characterized by a high over the the subtropical Sahara and a low over the tropics linked to the monsoon. We measured the variability of this high–low dipole-like pattern in terms of the North African dipole intensity (NAFDI): the difference of geopotential height anomalies averaged over the subtropics (30–32° N, Morocco) and the tropics (10–13° N, Bamako region) close to the Atlantic coast (at 5–8° W). We focused on the 700 hPa standard level due to dust export off the coast of North Africa tending to occur between 1 and 5 km a.s.l. Variability in the NAFDI is associated with displacements of the North African anticyclone over the Sahara and this has implications for wind and dust export. The correlations we found between the 1987–2014 summer mean of NAFDI with dust at Izaña, satellite dust observations and meteorological re-analysis data indicate that increases in the NAFDI (i) result in higher wind speeds at the north of the Inter-Tropical Convergence Zone that are associated with enhanced dust export over the subtropical North Atlantic, (ii) influence the long-term variability of the size distribution of exported dust particles (increasing the load of coarse dust) and (iii) are associated with enhanced rains in the tropical and northern shifts of the tropical rain band that may affect the southern Sahel. Interannual variability in NAFDI is also connected to spatial distribution of dust over the North Atlantic; high NAFDI summers are associated with major dust export (linked to winds) in the subtropics and minor dust loads in the tropics (linked to higher rainfall), and vice versa. The evolution of the summer NAFDI values since 1950 to the present day shows connections to climatic variability (through the Sahelian drought, ENSO (El Niño–Southern Oscillation) and winds) that have implications for dust export paths. Efforts to anticipate how dust export may evolve in future decades will require a better understanding of how the large-scale meteorological systems represented by the NAFD will evolve.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-11
    Description: NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 μm aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1° × 1° resolution versus corresponding/co-incident 0.550 μm AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. Daytime datasets are investigated similarly for context. Regional-mean CALIOP vertical profiles of night/day 0.532 μm extinction coefficient are compared with 0.523/0.532 μm ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalized 1° × 1° bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalized bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach ±20%. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalized bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at these latitudes. Root mean square deviation between CALIOP and NAAPS varies between 0.1 and 0.3 globally during both day/night. Averaging of CALIOP along-track AOD data points within a single NAAPS grid bin improves correlation and RMSD, though day/night and land/ocean biases persist and are believed systematic. Vertical profiles of extinction coefficient derived in the Caribbean compare well with ground-based lidar observations, though potentially anomalous selection of a-priori lidar ratios for CALIOP retrievals is likely inducing some discrepancies. Mean effective aerosol layer top heights are stable between day and night, indicating consistent layer-identification diurnally, which is noteworthy considering the potential limiting effects of ambient solar noise during day.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...