ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-10-29
    Description: The potential impacts of climate change on regional ozone (O3) and fine particulate (PM2.5) air quality in the United States (US) are investigated by linking global climate simulations with regional-scale meteorological and chemical transport models. Regional climate at 2000 and at 2030 under three Representative Concentration Pathways (RCPs) is simulated by using the Weather Research and Forecasting (WRF) model to downscale 11-year time slices from the Community Earth System Model (CESM). The downscaled meteorology is then used with the Community Multiscale Air Quality (CMAQ) model to simulate air quality during each of these 11-year periods. The analysis isolates the future air quality differences arising from climate-driven changes in meteorological parameters and specific natural emissions sources that are strongly influenced by meteorology. Other factors that will affect future air quality, such as anthropogenic air pollutant emissions and chemical boundary conditions, are unchanged across the simulations. The regional climate fields represent historical daily maximum and daily minimum temperatures well, with mean biases of less than 2 K for most regions of the US and most seasons of the year and good representation of variability. Precipitation in the central and eastern US is well simulated for the historical period, with seasonal and annual biases generally less than 25 %, with positive biases exceeding 25 % in the western US throughout the year and in part of the eastern US during summer. Maximum daily 8 h ozone (MDA8 O3) is projected to increase during summer and autumn in the central and eastern US. The increase in summer mean MDA8 O3 is largest under RCP8.5, exceeding 4 ppb in some locations, with smaller seasonal mean increases of up to 2 ppb simulated during autumn and changes during spring generally less than 1 ppb. Increases are magnified at the upper end of the O3 distribution, particularly where projected increases in temperature are greater. Annual average PM2.5 concentration changes range from −1.0 to 1.0 µg m−3. Organic PM2.5 concentrations increase during summer and autumn due to increased biogenic emissions. Aerosol nitrate decreases during winter, accompanied by lesser decreases in ammonium and sulfate, due to warmer temperatures causing increased partitioning to the gas phase. Among meteorological factors examined to account for modeled changes in pollution, temperature and isoprene emissions are found to have the largest changes and the greatest impact on O3 concentrations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-15
    Description: Tidal wetlands, such as tidal marshes and mangroves, are hotspots for carbon sequestration. The preservation of organic matter (OM) is a critical process by which tidal wetlands exert influence over the global carbon cycle and at the same time gain elevation to keep pace with sea-level rise (SLR). The present study provides the first global-scale field-based experimental evidence of temperature and relative sea level effects on the decomposition rate and stabilization of OM in tidal wetlands. The study was conducted in 26 marsh and mangrove sites across four continents, utilizing commercially available standardized OM. While effects on decomposition rate per se were minor, we show unanticipated and combined negative effects of temperature and relative sea level on OM stabilization. Across study sites, OM stabilization was 29 % lower in low, more frequently flooded vs. high, less frequently flooded zones. OM stabilization declined by ~ 90 % over the studied temperature gradient from 10.9 to 28.5 °C, corresponding to a decline of ~ 5 % over a 1 °C temperature increase. Additionally, data from the long-term ecological research site in Massachusetts, US show a pronounced reduction in OM stabilization by 〉 70 % in response to simulated coastal eutrophication, confirming the high sensitivity of OM stabilization to global change. We therefore provide evidence that rising temperature, accelerated SLR, and coastal eutrophication may decrease the future capacity of tidal wetlands to sequester carbon by affecting the initial transformations of recent OM inputs to soil organic matter.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-22
    Description: Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-30
    Description: Tidal wetlands, such as tidal marshes and mangroves, are hotspots for carbon sequestration. The preservation of organic matter (OM) is a critical process by which tidal wetlands exert influence over the global carbon cycle and at the same time gain elevation to keep pace with sea-level rise (SLR). The present study assessed the effects of temperature and relative sea level on the decomposition rate and stabilization of OM in tidal wetlands worldwide, utilizing commercially available standardized litter. While effects on decomposition rate per se were minor, we show strong negative effects of temperature and relative sea level on stabilization, as based on the fraction of labile, rapidly hydrolyzable OM that becomes stabilized during deployment. Across study sites, OM stabilization was 29 % lower in low, more frequently flooded vs. high, less frequently flooded zones. Stabilization declined by ∼ 75 % over the studied temperature gradient from 10.9 to 28.5 ∘C. Additionally, data from the Plum Island long-term ecological research site in Massachusetts, USA, show a pronounced reduction in OM stabilization by 〉 70 % in response to simulated coastal eutrophication, confirming the potentially high sensitivity of OM stabilization to global change. We therefore provide evidence that rising temperature, accelerated SLR, and coastal eutrophication may decrease the future capacity of tidal wetlands to sequester carbon by affecting the initial transformations of recent OM inputs to soil OM.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-27
    Description: The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency) CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2) recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs) and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of isoprene oxidation pathways, the rate of NOx recycling from isoprene nitrates, and the fate of the secondary, tertiary, and further oxidation products of isoprene.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-01-01
    Description: Zur Rekonstruktion der holozänen Landschaftsentwicklung eines kleinen Flußeinzugsgebietes in der Wetterau (Hessen) wurden Sedimentkerne erbohrt und mit verschiedenen Methoden untersucht. Hier werden die botanischen Ergebnisse von drei Bohrkernen aus dem Wettertal vorgestellt. Da die Pollenanalysen eher die regionale Vegetation, die botanischen Großreste hingegen eher die lokale oder extralokale Vegetation widerspiegeln, ist ein möglichst vollständiges Bild der holozänen Vegetationsentwicklung am besten durch eine Kombination beider Methoden zu erreichen. Neben einigen Aspekten zur Bildung des sogenannten Schwarzen Auenbodens und holozäner Auenlehme ergaben sich Hinweise auf (u. a. Mesolithische) anthropogene Aktivitäten im Tal der Wetter.
    Print ISSN: 0424-7116
    Electronic ISSN: 2199-9090
    Topics: Geosciences , History
    Published by Copernicus on behalf of Deutsche Quartärvereinigung.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-04-08
    Description: This article presents a methodology for creating anthropogenic emission inventories that can be used to simulate future regional air quality. The Emission Scenario Projection (ESP) methodology focuses on energy production and use, the principal sources of many air pollutants. Emission growth factors for energy system categories are calculated using the MARKAL energy system model. Growth factors for non-energy sectors are based on economic and population projections. These factors are used to grow a 2005 emissions inventory through 2050. The approach is demonstrated for two emission scenarios for the United States. Scenario 1 extends current air regulations through 2050, while Scenario 2 adds a hypothetical CO2 mitigation policy. Although both scenarios show significant reductions in air pollutant emissions through time, these reductions are more pronounced in Scenario 2, where the CO2 policy results in the adoption of technologies with lower emissions of both CO2 and traditional air pollutants. The methodology is expected to play an important role within an integrated modeling framework that supports the US EPA's investigations of linkages among emission drivers, climate and air quality.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-17
    Description: To understand more fully the effects of global changes on ambient concentrations of ozone and particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) in the US, we conducted a comprehensive modeling effort to evaluate explicitly the effects of changes in climate, biogenic emissions, land use, and global/regional anthropogenic emissions on ozone and PM2.5 concentrations and composition. Results from the ECHAM5 global climate model driven with the A1B emission scenario from the Intergovernmental Panel on Climate Change (IPCC) were downscaled using the Weather Research and Forecasting (WRF) model to provide regional meteorological fields. We developed air quality simulations using the Community Multiscale Air Quality Model (CMAQ) chemical transport model for two nested domains with 220 and 36 km horizontal grid cell resolution for a semi-hemispheric domain and a continental United States (US) domain, respectively. The semi-hemispheric domain was used to evaluate the impact of projected Asian emissions changes on US air quality. WRF meteorological fields were used to calculate current (2000s) and future (2050s) biogenic emissions using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). For the semi-hemispheric domain CMAQ simulations, present-day global emissions inventories were used and projected to the 2050s based on the IPCC A1B scenario. Regional anthropogenic emissions were obtained from the US Environmental Protection Agency National Emission Inventory 2002 (EPA NEI2002) and projected to the future using the MARKet ALlocation (MARKAL) energy system model assuming a business as usual scenario that extends current decade emission regulations through 2050. Our results suggest that daily maximum 8 h average ozone (DM8O) concentrations will increase in a range between 2 to 12 ppb across most of the continental US, with the highest increase in the South, Central, and Midwest regions of the US, due to increases in temperature, enhanced biogenic emissions, and changes in land use. The effects of these factors are only partially offset by reductions in DM8O associated with decreasing US anthropogenic emissions. Increases in PM2.5 levels between 2 and 4 μg m−3 in the Northeast, Southeast, and South regions are mostly a result of enhanced biogenic emissions and land use changes. Little change in PM2.5 in the Central, Northwest, and Southwest regions was found, even when PM precursors are reduced with regulatory curtailment. Changes in temperature, relative humidity, and boundary conditions shift the composition but do not alter overall PM2.5 mass concentrations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-13
    Description: The potential impacts of climate change on regional ozone (O3) and fine particulate (PM2.5) air quality in the United States are investigated by downscaling Community Earth System Model (CESM) global climate simulations with the Weather Research and Forecasting (WRF) model, then using the downscaled meteorological fields with the Community Multiscale Air Quality (CMAQ) model. Regional climate and air quality change between 2000 and 2030 under three Representative Concentration Pathways (RCPs) is simulated using 11-year time slices from CESM. The regional climate fields represent historical daily maximum and daily minimum temperatures well, with mean biases less than 2K for most regions of the U.S. and most seasons of the year and good representation of the variability. Precipitation in the central and eastern U.S. is well simulated for the historical period, with seasonal and annual biases generally less than 25%, and positive biases in the western U.S. throughout the year and in part of the eastern U.S. during summer. Maximum daily 8-h ozone (MDA8 O3) is projected to increase during summer and autumn in the central and eastern U.S. The increase in summer mean MDA8 O3 is largest under RCP8.5, exceeding 4ppb in some locations, with smaller seasonal mean increases of up to 2ppb simulated during autumn and changes during spring generally less than 1ppb. Increases are magnified at the upper end of the O3 distribution, particularly where projected increases in temperature are greater. Annual average PM2.5 concentration changes range from −1.0 to 1.0μgm−3. Organic PM2.5 concentrations increase during summer and autumn due to increased biogenic emissions. Decreases in aerosol nitrate occur during winter, accompanied by lesser decreases in ammonium and sulfate, due to warmer temperatures causing increased partitioning to the gas phase. Among meteorological factors examined to account for modeled changes in pollution, temperature and isoprene emissions are found to have the largest changes and the greatest impact on O3 concentrations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-10-17
    Description: The CMAQ model in combination with observations for INTEX-NA/ICARTT 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA Community Multiscale Air Quality (CMAQ) model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2) recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination in the Southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs) and their relationship with O3, by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 h or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of isoprene oxidation pathways, the rate of NOx recycling from isoprene nitrates, and the fate of the secondary, tertiary, and further oxidation products of isoprene.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...