ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-08
    Description: The Southern Ocean (44° S–75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea-air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea-air CO2 fluxes between 1990–2009. Using all models and inversions (26), the integrated median annual sea-air CO2 flux of −0.42 ± 0.07 Pg C yr−1 for the 44° S–75° S region is consistent with the −0.27 ± 0.13 Pg C yr−1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: −0.04 ± 0.07 Pg C yr−1 and observations: +0.04 ± 0.02 Pg C yr−1), with most of the net annual flux located in the 44° S to 58° S circumpolar band (model and inversion median: −0.36 ± 0.09 Pg C yr−1 and observations: −0.35 ± 0.09 Pg C yr−1). Seasonally, in the 44° S–58° S region, the median of 5 ocean biogeochemical models captures the observed sea-air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea-air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux with 25% of this inter-annual variability attributed to the region south of 58° S. Trends in the net CO2 flux from the inversions and models are not statistically different from the expected increase of –0.05 Pg C yr−1 decade−1 due to increasing atmospheric CO2 concentrations. However, resolving long term trends is difficult due to the large interannual variability and short time frame (1990–2009) of this study.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-25
    Description: Three independent studies of carbon export and sequestration in the southern Benguela upwelling system are presented. They were undertaken by Waldron (upwelling index), Monteiro (discrete upwelling centres – gate hypothesis model) and Swart (cross-shelf advection in bottom nelpheloid layers). The annual estimates were, 3.9×1013, 0.72×1013 and 8.6×1011 gC respectively. The lowest estimate was derived from a consideration of low frequency lateral carbon export in the bottom nepheloid layer and was thought likely to be an under-estimate. Taking into account high frequency episodic events, intermediate nepheloid layers and along isopycnal export of DOC at surface and intermediate depths was thought likely to result in a substantial upward revision. The remaining two estimates were considered to be an upper and lower estimate of carbon export and sequestration due to factors inherent in the methodologies. The upper estimate presents a two-dimensional system, integrated alongshore; the lower estimate sums a series of upwelling centres in order to obtain a system flux. The former is therefore a uniform extrapolation along the coast while the latter omits upwelling between the upwelling centres.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-18
    Description: The seasonal cycle of primary productivity is impacted by seasonal and intra-seasonal dynamics of the mixed layer through the changing balance between mixing and buoyancy forcing, which regulates nutrient supply and light availability. Of particular recent interest is the role of synoptic scale events in supplying nutrients, particularly iron, to the euphotic zone in the Sub Antarctic Zone (SAZ), where phytoplankton blooms occur throughout summer. In this study, we present high resolution measurements of net community production (NCP) constrained by ΔO2/Ar ratios, and mixed layer depth (MLD) in the Atlantic SAZ. We found a non-linear relationship between NCP and MLD, with the highest and most variable NCP observed in shallow MLDs (〈 45 m). We propose that NCP variability in the SAZ may be driven by alternating states of synoptic-scale deepening of the mixed layer, leading to the entrainment of iron (dFe), followed by restratification, allowing rapid growth in an iron replete, high light environment. Synoptic iron fluxes into the euphotic zone based on water column dFe profiles and high resolution glider MLD data, reveal a potentially significant contribution of "new iron" which could sustain NCP throughout summer. Future process studies will help elaborate these findings further.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-13
    Description: The seasonal cycle is the mode that couples climate forcing to ecosystem production. A better understanding of the regional characteristics of the seasonal cycle addresses an important gap in our understanding of the sensitivity of the biological pump to climate change. The regional characteristics of the seasonal cycle of phytoplankton biomass in the Southern Ocean were examined in terms of the timing of the bloom initiation, its amplitude, regional scale variability and the importance of the climatological seasonal cycle in explaining the overall variance. The study highlighted important differences between the spatial distribution of satellite observed phytoplankton biomass and the more dynamically linked characteristics of the seasonal cycle. The seasonal cycle was consequently defined into four broad zonal regions; the subtropical zone (STZ), the transition zone (TZ), the Antarctic circumpolar zone (ACZ) and the marginal ice zone (MIZ). Defining the Southern Ocean according to the characteristics of its seasonal cycle provides a more dynamic understanding of ocean productivity based on underlying physical drivers rather than climatological biomass. The response of the biology to the underlying physics of the different seasonal zones resulted in an additional classification of four regions based on the extent of interannual seasonal phase locking and the amplitude of the integrated seasonal biomass. This characterisation contributes to an improved understanding of regional sensitivity to climate forcing potentially allowing more robust predictions of long term climate trends.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-10-02
    Description: We review here available information on distributions of methane (CH4) and nitrous oxide (N2O) from major, mostly coastal, oxygen (O2)-deficient zones produced due to both natural processes and human activities (mainly eutrophication). Concentrations of both gases in subsurface waters are affected by ambient O2 levels. In the case of CH4, bottom-water O2 content probably affects emission from sediments, believed to be the main source of water-column CH4, as well as its oxidative loss in water itself. Highest CH4 accumulation (several μM) occurs in silled basins having anoxic deep waters such as the Black Sea and the Cariaco Basin. One to two orders of magnitude smaller, but still significant, accumulation also occurs in bottom waters of open margins experiencing anoxia and in silled basins containing suboxic/severely hypoxic waters. In highly eutrophic waters over open continental shelves (such as the upwelling zone off Namibia and the "dead zone" in the Gulf of Mexico) high CH4 concentrations (several hundred nM) may occur in non-sulphidic waters as well, but in these regions it is difficult to differentiate the hypoxia-induced enhancement from in situ production of CH4 in the water column and, sometimes, large inputs of CH4 associated with freshwater runoff or seepage from sediments. Despite the observed CH4 build-up in low-O2 bottom waters, methanotrophic activity severely restricts its emission from the ocean. As a result, an intensification or expansion of coastal hypoxic zones will probably not drastically change the present status where emission from the ocean as a whole forms an insignificant term in the atmospheric CH4 budget. The situation is different for N2O, the production of which is greatly enhanced in severely hypoxic waters, and although it is lost through denitrification in most suboxic and anoxic environments, the peripheries of such environments offer most suitable conditions for its production, with the exception of semi-enclosed/land-locked anoxic basins such as the Black Sea. Most O2-deficient systems serve as strong net sources of N2O to the atmosphere. This is especially true for regions of coastal upwelling with shallow oxygen minimum zones where a dramatic increase in N2O production often occurs in rapidly denitrifying waters. Nitrous oxide emissions from these zones are globally significant, and so their ongoing intensification and expansion is likely to lead to a significant increase in N2O emission from the ocean. However, a meaningful quantitative prediction of this increase is not possible at present because of continuing uncertainties concerning the formative pathways to N2O as well as insufficient data from some key coastal regions.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-23
    Description: Increasing anthropogenic CO2 is decreasing surface water aragonite saturation state (ΩA), a growing concern for calcifying Euthecosome pteropods and its wider impact on Antarctic ecosystems. However, our understanding of the seasonal cycle and interannual variability of this vulnerable ecosystem remains limited. This study examines surface water ΩA from four consecutive summers in the Eastern Weddell Gyre (EWG) ice shelf region, and investigates the drivers and the role played by the seasonal cycle in the interannual variability of ΩA. Interannual variability in the seasonal phasing and the rate of summer sea ice thaw was found to be the primary factor explaining interannual variability in surface water ΩA. In "optimal" summers when summer sea ice thaw began in late November/early December (2008/2009 and 2010/2011), the summertime increase in ΩA was found to be 1.02, approximately double that from summers when sea ice thaw was delayed to late December (2009/2010 and 2011/2012). We propose that the two critical climate (physical-biogeochemical) sensitivities for ΩA are the timing and the rate of sea ice thaw, which has a direct impact on the mixed layer and the resulting onset and persistence of phytoplankton blooms. The strength of summertime carbonate saturation depends on seasonal changes of sea ice, stratification and primary production. The sensitivity of surface water biogeochemistry in this region to interannual changes in mixed layer – sea ice processes, suggests that future trends in climate and the seasonal cycle of sea ice, combined with rapidly increasing anthropogenic CO2 will likely be a concern for the Antarctic ice shelf ecosystem within the next few decades. If in the future, primary production is reduced and CO2 increased, our results suggest that in the EWG summertime surface water aragonite undersaturation will emerge by the middle of this century.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-06-19
    Description: The Southern Ocean (44–75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea–air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea–air CO2 fluxes between 1990–2009. Using all models and inversions (26), the integrated median annual sea–air CO2 flux of −0.42 ± 0.07 Pg C yr−1 for the 44–75° S region, is consistent with the −0.27 ± 0.13 Pg C yr−1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: −0.04 ± 0.07 Pg C yr−1 and observations: +0.04 ± 0.02 Pg C yr−1), with most of the net annual flux located in the 44 to 58° S circumpolar band (model and inversion median: −0.36 ± 0.09 Pg C yr−1 and observations: −0.35 ± 0.09 Pg C yr−1). Seasonally, in the 44–58° S region, the median of 5 ocean biogeochemical models captures the observed sea–air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea–air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux, with 25% of this interannual variability attributed to the region south of 58° S. Resolving long-term trends is difficult due to the large interannual variability and short time frame (1990–2009) of this study; this is particularly evident from the large spread in trends from inversions and ocean biogeochemical models. Nevertheless, in the period 1990–2009 ocean biogeochemical models do show increasing oceanic uptake consistent with the expected increase of −0.05 Pg C yr−1 decade−1. In contrast, atmospheric inversions suggest little change in the strength of the CO2 sink broadly consistent with the results of Le Quéré et al. (2007).
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-07-12
    Description: We review here the available information on methane (CH4) and nitrous oxide (N2O) from major marine, mostly coastal, oxygen (O2)-deficient zones formed both naturally and as a result of human activities (mainly eutrophication). Concentrations of both gases in subsurface waters are affected by ambient O2 levels to varying degrees. Organic matter supply to seafloor appears to be the primary factor controlling CH4 production in sediments and its supply to (and concentration in) overlying waters, with bottom-water O2-deficiency exerting only a modulating effect. High (micromolar level) CH4 accumulation occurs in anoxic (sulphidic) waters of silled basins, such as the Black Sea and Cariaco Basin, and over the highly productive Namibian shelf. In other regions experiencing various degrees of O2-deficiency (hypoxia to anoxia), CH4 concentrations vary from a few to hundreds of nanomolar levels. Since coastal O2-deficient zones are generally very productive and are sometimes located close to river mouths and submarine hydrocarbon seeps, it is difficult to differentiate any O2-deficiency-induced enhancement from in situ production of CH4 in the water column and its inputs through freshwater runoff or seepage from sediments. While the role of bottom-water O2-deficiency in CH4 formation appears to be secondary, even when CH4 accumulates in O2-deficient subsurface waters, methanotrophic activity severely restricts its diffusive efflux to the atmosphere. As a result, an intensification or expansion of coastal O2-deficient zones will probably not drastically change the present status where emission from the ocean as a whole forms an insignificant term in the atmospheric CH4 budget. The situation is different for N2O, the production of which is greatly enhanced in low-O2 waters, and although it is lost through denitrification in most suboxic and anoxic environments, the peripheries of such environments offer most suitable conditions for its production, with the exception of enclosed anoxic basins. Most O2-deficient systems serve as strong net sources of N2O to the atmosphere. This is especially true for coastal upwelling regions with shallow O2-deficient zones where a dramatic increase in N2O production often occurs in rapidly denitrifying waters. Nitrous oxide emissions from these zones are globally significant, and so their ongoing intensification and expansion is likely to lead to a significant increase in N2O emission from the ocean. However, a meaningful quantitative prediction of this increase is not possible at present because of continuing uncertainties concerning the formative pathways to N2O as well as insufficient data from key coastal regions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-10-07
    Description: In the Ocean, the seasonal cycle is the mode that couples climate forcing to ecosystem response in production, diversity and carbon export. A better characterisation of the ecosystem's seasonal cycle therefore addresses an important gap in our ability to estimate the sensitivity of the biological pump to climate change. In this study, the regional characteristics of the seasonal cycle of phytoplankton biomass in the Southern Ocean are examined in terms of the timing of the bloom initiation, its amplitude, regional scale variability and the importance of the climatological seasonal cycle in explaining the overall variance. The seasonal cycle was consequently defined into four broad zonal regions; the subtropical zone (STZ), the transition zone (TZ), the Antarctic circumpolar zone (ACZ) and the marginal ice zone (MIZ). Defining the Southern Ocean according to the characteristics of its seasonal cycle provides a more dynamic understanding of ocean productivity based on underlying physical drivers rather than climatological biomass. The response of the biology to the underlying physics of the different seasonal zones resulted in an additional classification of four regions based on the extent of inter-annual seasonal phase locking and the magnitude of the integrated seasonal biomass. This regionalisation contributes towards an improved understanding of the regional differences in the sensitivity of the Southern Oceans ecosystem to climate forcing, potentially allowing more robust predictions of the effects of long term climate trends.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-11-25
    Description: Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes deterioration of structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include fresh water runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses; their different interactions set up mechanisms that drive the system towards hypoxia. However, whether the coastal environment becomes hypoxic or not, under the combination of external forcings, depends also on the nature of the ecosystem, e.g. physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences can be compression and loss of habitat, as well as change in life cycle and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in a non-linear way and has pronounced feedbacks to other compartments of the Earth System, hence affecting human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behaviour that will improve confidence in remediation management strategies for coastal hypoxia.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...