ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-22
    Description: Satellite quantification of aerosol effects on clouds relies on aerosol optical depth (AOD) as a proxy for aerosol concentration or cloud condensation nuclei (CCN). However, the lack of error characterization of satellite-based results hampers their use for the evaluation and improvement of global climate models. We show that the use of AOD for assessing aerosol–cloud interactions (ACIs) is inadequate over vast oceanic areas in the subtropics. Instead, we postulate that a more physical approach that consists of matching vertically resolved aerosol data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite at the cloud-layer height with Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud retrievals reduces uncertainties in satellite-based ACI estimates. Combined aerosol extinction coefficients (σ) below cloud top (σBC) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud droplet number concentrations (Nd) from MODIS Aqua yield high correlations across a broad range of σBC values, with σBC quartile correlations ≥0.78. In contrast, CALIOP-based AOD yields correlations with MODIS Nd of 0.54–0.62 for the two lower AOD quartiles. Moreover, σBC explains 41 % of the spatial variance in MODIS Nd, whereas AOD only explains 17 %, primarily caused by the lack of spatial covariability in the eastern Pacific. Compared with σBC, near-surface σ weakly correlates in space with MODIS Nd, accounting for a 16 % variance. It is concluded that the linear regression calculated from ln(Nd)–ln(σBC) (the standard method for quantifying ACIs) is more physically meaningful than that derived from the Nd–AOD pair.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-18
    Description: Linear contrail coverage, optical property, and radiative forcing data over the Northern Hemisphere (NH) are derived from a year (2012) of Terra and Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) imagery and compared with previously published 2006 results (Duda et al., 2013; Bedka et al., 2013; Spangenberg et al., 2013) using a consistent retrieval methodology. Differences in the observed Terra-minus-Aqua screened contrail coverage and patterns in the 2012 annual-mean air traffic estimated with respect to satellite overpass time suggest that most contrails detected by the contrail detection algorithm (CDA) form approximately 2 h before overpass time. The 2012 screened NH contrail coverage (Mask B) shows a relative 3 % increase compared to 2006 data for Terra and increases by almost 7 % for Aqua, although the differences are not expected to be statistically significant. A new post-processing algorithm added to the contrail mask processing estimated that the total contrail cirrus coverage visible in the MODIS imagery may be 3 to 4 times larger than the linear contrail coverage detected by the CDA. This estimate is similar in magnitude to the spreading factor estimated by Minnis et al. (2013). Contrail property retrievals of the 2012 data indicate that both contrail optical depth and contrail effective diameter decreased approximately 10 % between 2006 and 2012. The decreases may be attributed to better background cloudiness characterization, changes in the waypoint screening, or changes in contrail temperature. The total mean contrail radiative forcings (TCRFs) for all 2012 Terra observations were −6.3, 14.3, and 8.0 mW m−2 for the shortwave (SWCRF), longwave (LWCRF), and net forcings, respectively. These values are approximately 20 % less than the corresponding 2006 Terra estimates. The decline in TCRF results from the decrease in normalized CRF, partially offset by the 3 % increase in overall contrail coverage in 2012. The TCRFs for 2012 Aqua are similar, −6.4, 15.5, and 9.0 mW m−2 for shortwave, longwave, and net radiative forcing. The strong correlation between the relative changes in both total SWCRF and LWCRF between 2006 and 2012 and the corresponding relative changes in screened contrail coverage over each air traffic region suggests that regional changes in TCRF from year to year are dominated by year-to-year changes in contrail coverage over each area.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-30
    Description: Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis rates and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well known, however, how much error in O3 predictions can be directly attributed to error in cloud predictions. This study applies the Weather Research and Forecasting with Chemistry (WRF-Chem) model at 12 km horizontal resolution with the Morrison microphysics and Grell 3-D cumulus parameterization to quantify uncertainties in summertime surface O3 predictions associated with cloudiness over the contiguous United States (CONUS). All model simulations are driven by reanalysis of atmospheric data and reinitialized every 2 days. In sensitivity simulations, cloud fields used for photochemistry are corrected based on satellite cloud retrievals. The results show that WRF-Chem predicts about 55 % of clouds in the right locations and generally underpredicts cloud optical depths. These errors in cloud predictions can lead to up to 60 ppb of overestimation in hourly surface O3 concentrations on some days. The average difference in summertime surface O3 concentrations derived from the modeled clouds and satellite clouds ranges from 1 to 5 ppb for maximum daily 8 h average O3 (MDA8 O3) over the CONUS. This represents up to ∼ 40 % of the total MDA8 O3 bias under cloudy conditions in the tested model version. Surface O3 concentrations are sensitive to cloud errors mainly through the calculation of photolysis rates (for ∼ 80 %), and to a lesser extent to light-dependent BVOC emissions. The sensitivity of surface O3 concentrations to satellite-based cloud corrections is about 2 times larger in VOC-limited than NOx-limited regimes. Our results suggest that the benefits of accurate predictions of cloudiness would be significant in VOC-limited regions, which are typical of urban areas.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-22
    Description: Recent studies have found that ingestion of high mass concentrations of ice particles in regions of deep convective storms, with radar reflectivity considered safe for aircraft penetration, can adversely impact aircraft engine performance. Previous aviation industry studies have used the term high ice water content (HIWC) to define such conditions. Three airborne field campaigns were conducted in 2014 and 2015 to better understand how HIWC is distributed in deep convection, both as a function of altitude and proximity to convective updraft regions, and to facilitate development of new methods for detecting HIWC conditions, in addition to many other research and regulatory goals. This paper describes a prototype method for detecting HIWC conditions using geostationary (GEO) satellite imager data coupled with in situ total water content (TWC) observations collected during the flight campaigns. Three satellite-derived parameters were determined to be most useful for determining HIWC probability: (1) the horizontal proximity of the aircraft to the nearest overshooting convective updraft or textured anvil cloud, (2) tropopause-relative infrared brightness temperature, and (3) daytime-only cloud optical depth. Statistical fits between collocated TWC and GEO satellite parameters were used to determine the membership functions for the fuzzy logic derivation of HIWC probability. The products were demonstrated using data from several campaign flights and validated using a subset of the satellite–aircraft collocation database. The daytime HIWC probability was found to agree quite well with TWC time trends and identified extreme TWC events with high probability. Discrimination of HIWC was more challenging at night with IR-only information. The products show the greatest capability for discriminating TWC  ≥  0.5 g m−3. Product validation remains challenging due to vertical TWC uncertainties and the typically coarse spatio-temporal resolution of the GEO data.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-27
    Description: Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water–atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly Ts observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source.This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-10
    Description: Mean properties of individual contrails are characterized for a wide range of jet aircraft as a function of age during their life cycle from seconds to 11.5 h (7.4–18.7 km altitude, −88 to −31 °C ambient temperature), based on a compilation of about 230 previous in situ and remote sensing measurements. The airborne, satellite, and ground-based observations encompass exhaust contrails from jet aircraft from 1972 onwards, as well as a few older data for propeller aircraft. The contrails are characterized by mean ice particle sizes and concentrations, extinction, ice water content, optical depth, geometrical depth, and contrail width. Integral contrail properties include the cross-section area and total number of ice particles, total ice water content, and total extinction (area integral of extinction) per contrail length. When known, the contrail-causing aircraft and ambient conditions are characterized. The individual datasets are briefly described, including a few new analyses performed for this study, and compiled together to form a contrail library (COLI). The data are compared with results of the Contrail Cirrus Prediction (CoCiP) model. The observations confirm that the number of ice particles in contrails is controlled by the engine exhaust and the formation process in the jet phase, with some particle losses in the wake vortex phase, followed later by weak decreases with time. Contrail cross sections grow more quickly than expected from exhaust dilution. The cross-section-integrated extinction follows an algebraic approximation. The ratio of volume to effective mean radius decreases with time. The ice water content increases with increasing temperature, similar to non-contrail cirrus, while the equivalent relative humidity over ice saturation of the contrail ice mass increases at lower temperatures in the data. Several contrails were observed in warm air above the Schmidt–Appleman threshold temperature. The emission index of ice particles, i.e., the number of ice particles formed in the young contrail per burnt fuel mass, is estimated from the measured concentrations for estimated dilution; maximum values exceed 1015 kg−1. The dependence of the data on the observation methods is discussed. We find no obvious indication for significant contributions from spurious particles resulting from shattering of ice crystals on the microphysical probes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-05
    Description: Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared- (TIR-) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary-Earth orbit (GEO) satellite and low-Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR) can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-real time and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-real-time hourly Ts observations can be assimilated in high-temporal resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts, data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing angle. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product, derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirical means of correcting for the viewing-angle dependency of satellite land surface temperature (LST) is explained and validated. Application of a daytime nadir-normalization model yields improved accuracy and precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program/NOAA ESRL Surface Radiation network ground stations. These corrections serve as a basis for a means to improve satellite-based LST accuracy, thereby leading to better monitoring and utilization of the data. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-06
    Description: Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term GHI forecasts of the Weather Research and Forecasting (WRF) model in midlatitudes in case studies. An evaluation of the method under tropical conditions and a quantification of this improvement for study periods of more than a few days are still missing. This paper focuses on the assimilation of CWP retrievals in three phases (ice, supercooled, and liquid) in a 6-hourly cycling procedure and on the impact of this method on short-term forecasts of GHI for Réunion Island, a tropical island in the southwest Indian Ocean. The multilayer gridded cloud properties of NASA Langley's Satellite ClOud and Radiation Property retrieval System (SatCORPS) are assimilated using the EnKF of the Data Assimilation Research Testbed (DART) Manhattan release (revision 12002) and the advanced research WRF (ARW) v3.9.1.1. The ability of the method to improve cloud analyses and GHI forecasts is demonstrated, and a comparison using independent radiosoundings shows a reduction of specific humidity bias in the WRF analyses, especially in the low and middle troposphere. Ground-based GHI observations at 12 sites on Réunion Island are used to quantify the impact of CWP DA. Over a total of 44 d during austral summertime, when averaged over all sites, CWP data assimilation has a positive impact on GHI forecasts for all lead times between 5 and 14 h. Root mean square error and mean absolute error are reduced by 4 % and 3 %, respectively.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-10
    Description: The NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) project included goals related to aerosol particle life cycle in convective regimes. Using the University of Wisconsin High Spectral Resolution Lidar system at Huntsville, Alabama, USA, and the NASA DC-8 research aircraft, we investigate the altitude dependence of aerosol, water vapor and Altocumulus (Ac) properties in the free troposphere from a canonical 12 August 2013 convective storm case as a segue to a presentation of a mission-wide analysis. It stands to reason that any moisture detrainment from convection must have an associated aerosol layer. Modes of covariability between aerosol, water vapor and Ac are examined relative to the boundary layer entrainment zone, 0 ∘C level, and anvil, a region known to contain Ac clouds and a complex aerosol layering structure (Reid et al., 2017). Multiple aerosol layers in regions warmer than 0 ∘C were observed within the planetary boundary layer entrainment zone. At 0 ∘C there is a proclivity for aerosol and water vapor detrainment from storms, in association with melting level Ac shelves. Finally, at temperatures colder than 0 ∘C, weak aerosol layers were identified above Cumulus congestus tops (∼0 and ∼-20 ∘C). Stronger aerosol signals return in association with anvil outflow. In situ data suggest that detraining particles undergo aqueous-phase or heterogeneous chemical or microphysical transformations, while at the same time larger particles are being scavenged at higher altitudes leading to enhanced nucleation. We conclude by discussing hypotheses regarding links to aerosol emissions and potential indirect effects on Ac clouds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-03-13
    Description: The NASA Studies of Emissions & Atmospheric Composition, Clouds & Climate Coupling by Regional Surveys (SEAC4RS) project included goals related to aerosol particle lifecycle in convective regimes. Using the University of Wisconsin High Spectral Resolution Lidar system at Huntsville, Alabama USA and the NASA DC-8 research aircraft, we investigate the altitude dependence of aerosol, water vapor and Altocumulus (Ac) properties in the free troposphere from a canonical August 12, 2013 convective storm case as a segue to a presentation of a mission wide analysis. It stands to reason that any moisture detrainment from convection must have an associated aerosol layer. Modes of covariability between aerosol, water vapor and Ac are examined relative to the boundary layer entrainment zone, 0 °C level, and anvil, a region known to contain Ac clouds and a complex aerosol layering structure (Reid et al., 2017). Multiple aerosol layers in regions warmer than 0 °C were observed within the PBL entrainment zone. At 0 °C there is a proclivity for aerosol and water vapor detrainment from storms, in association with melting level Ac shelves. Finally, at temperatures colder than 0 °C, weak aerosol layers were identified above Cumulus congestus tops (~0 °C and ~ 20 °C). Stronger aerosol signals return in association with anvil outflow. In situ data suggest that detraining particles undergo aqueous phase or heterogeneous chemical or microphysical transformations, while at the same time larger particles are being scavenged at higher altitudes leading to enhanced nucleation. We conclude by discussing hypotheses regarding links to aerosol emissions and potential indirect effects on Ac clouds.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...