ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-24
    Description: Soils represent the largest reservoir of organic carbon (OC) on land. Upon mobilization, this OC is either returned to the atmosphere as carbon dioxide (CO2) or transported and ultimately locked into (marine) sediments, where it will act as a long-term sink of atmospheric CO2. These fluxes of soil OC are, however, difficult to evaluate, mostly due to the lack of a soil-specific tracer. In this study, a suite of branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are membrane lipids of soil bacteria, is tested as specific tracers for soil OC from source (soils under arable land, ley, grassland, and woodland) to sink (Loe Pool sediments) in a small catchment located in southwest England (i.e. Carminowe Creek draining into Loe Pool). The analysis of brGDGTs in catchment soils reveals that their distribution is not significantly different across different land use types (p〉0.05) and thus does not allow land-use-specific soil contributions to Loe Pool sediments to be traced. Furthermore, the significantly higher contribution of 6-methyl brGDGT isomers in creek sediments (isomerization ratio (IR) = 0.48±0.10, mean ± standard deviation (SD); p
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-29
    Description: Over the last few decades, a suite of inorganic proxies based on foraminiferal calcite have been developed, some of which are now widely used for palaeoenvironmental reconstructions. Studies of foraminiferal shell chemistry have largely focused on cations and oxyanions, while much less is known about the incorporation of anions. The halogens fluoride and chloride are conservative in the ocean, which makes them candidates for reconstructing palaeoceanographic parameters. However, their potential as a palaeoproxy has hardly been explored, and fundamental insight into their incorporation is required. Here we used nanoscale secondary ion mass spectrometry (NanoSIMS) to investigate, for the first time, the distribution of Cl and F within shell walls of four benthic species of foraminifera. In the rotaliid species Ammonia tepida and Amphistegina lessonii, Cl and F were distributed highly heterogeneously within the shell walls, forming bands that were co-located with the bands observed in the distribution of phosphorus (significant positive correlation of both Cl and F with P; p
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-29
    Description: Organic carbon processing at the seafloor is studied by geologists to better understand the sedimentary record, by biogeochemists to quantify burial and respiration, by organic geochemists to elucidate compositional changes and by ecologists to follow carbon transfers within food webs. Here I review these disciplinary approaches and discuss where they agree and disagree. It shown that the biogeochemical approach (ignoring the identity of organisms) and the ecological approach (focussing on growth and biomass of organisms) are consistent on longer time scales. It is hypothesized that secondary production by microbes and animals might impact the composition of sedimentary organic matter eventually buried. Animals impact sediment organic carbon processing by microbes in multiple ways: by governing organic carbon supply to sediments and by mixing labile organic matter to deeper layers. An inverted microbial loop is presented in which microbes profit from bioturbation rather than animals profiting from microbial processing of otherwise lost dissolved organic resources. Sediments devoid of fauna therefore function differently and are less efficient in processing organic matter with the consequence that more organic matter is buried and transferred from Vernadsky’s biosphere to the geosphere.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-20
    Description: The Paleocene – Eocene Thermal Maximum (PETM; 56 Ma) was a phase of rapid global warming associated with massive carbon input into the ocean-atmosphere system from a 13C-depleted reservoir. Many mid- and high-latitude sections have been studied and document changes in salinity, hydrology and sedimentation, deoxygenation, biotic overturning and migrations, but detailed records from tropical regions are lacking. Here, we study the PETM at Ocean Drilling Program (ODP) Site 959 in the equatorial Atlantic using a range of organic and inorganic proxies and couple these with dinoflagellate cyst (dinocyst) assemblage analysis. The PETM at Site 959 was previously found to be marked by a ~3.8 ‰ negative carbon isotope excursion (CIE), and a ~4 ºC surface ocean warming from the uppermost Paleocene to peak PETM, of which ~1 ºC occurs before the onset of the CIE. We record upper Paleocene dinocyst assemblages that are similar to PETM assemblages as found in extra-tropical regions, confirming poleward migrations of ecosystems during the PETM. The early stages of the PETM are marked by a typical acme of the tropical genus Apectodinium, which reaches abundances of up to 95 %. Subsequently, dinocyst abundances diminish greatly, as do carbonate and pyritized silicate microfossils. The combined paleoenvironmental information from Site 959 and a close by shelf site in Nigeria implies the general absence of eukaryotic surface-dwelling microplankton during peak PETM warmth is most likely caused by heat stress. Crucially, abundant organic benthic foraminiferal linings imply sustained export production, likely driven by prokaryotes. In sharp contrast, the recovery of the CIE yields rapid (≪10 kyr) fluctuations in the abundance of several dinocyst groups, suggesting extreme ecosystem and environmental variability.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-17
    Description: Here, we present the implementation of the freshwater carbon (C) cycle in the Dynamic In-stream Chemistry module (CARBON-DISC), which is part of the Integrated Model to Assess the Global Environment-Dynamic Global Nutrient Model (IMAGE-DGNM). A coupled hydrology-biogeochemistry approach with 0.5 by 0.5-degree resolution accounts for the spatial and temporal variability in dynamic conditions in the aquatic continuum using independent global databases. This process-based model resolves the concentrations, transformations and transfer fluxes of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and terrestrial and autochthonous particulate organic carbon (POC) from headwaters to river mouth with a time step of 1 month for the period 1950–2000. This is a major step forward in basin scale modelling of the C processing in freshwater systems, since simulated results can be validated at every location and point in time, and the model can be applied for retrodiction and to analyse future scenarios. Validation of the model with long-term measurement data shows a fair agreement, considering that this is a global model. To analyse the performance of the full production-respiration DISC module, two other schemes are presented, including an abiotic system excluding any in-stream processing of DOC and allochthonous production, and an extended abiotic system including heterotrophic respiration, but excluding production. Furthermore, a sensitivity analysis shows that many parameters, such as temperature, solar radiation, organic sediment mineralization rate and C inputs, including particulate organic carbon from terrestrial vegetation and dissolved inorganic carbon from groundwater, strongly affect atmosphere-freshwater exchange of CO2.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-19
    Description: Marine sediments, particularly those located in estuarine and coastal zones, are key locations for the burial of organic carbon (C). However, organic C delivered to the sediment is subjected to a range of biological C-cycling processes, the rates and relative importance of which vary markedly between sites, and which are thus difficult to predict. In this study, stable isotope tracer experiments were used to quantify the processing of C by microbial and faunal communities in two contrasting Scottish estuarine sites: a subtidal, organic C rich site in Loch Etive with cohesive fine-grained sediment, and an intertidal, organic C poor site on an Ythan estuary sand flat with coarse- grained permeable sediments. In both experiments, sediment cores were recovered and amended with 13C labelled phytodetritus to quantify whole community respiration of the added C and to trace the isotope label into faunal and bacterial biomass. Similar respiration rates were found in Loch Etive and on the Ythan sand flat (0.64±0.04 and 0.63±0.12 mg C m−2 h−1, respectively), which we attribute to the experiments being conducted at the same temperature. Faunal uptake of added C over the whole experiment was markedly greater in Loch Etive (204±72 mg C m−2) than on the Ythan sand flat (0.96±0.3mg C m−2), and this difference was driven by a difference in both faunal biomass and activity. Conversely, bacterial C uptake over the whole experiment in Loch Etive was much lower than that on the Ythan sand flat (1.80±1.66 and 127±89 mg C m−2 respectively). This was not driven by differences in biomass, indicating that the bacterial community in the permeable Ythan sediments was particularly active, being responsible for 48±18% of total biologically processed C. This type of biological C processing appears to be favoured in permeable sediments. The total amount of biologically processed C was greatest in Loch Etive, largely due to greater faunal C uptake, which was in turn a result of higher faunal biomass. When comparing results from this study with a wide range of previously published isotope tracing experiments, we found a strong correlation between total benthic biomass (fauna plus bacteria) and total biological C processing rates. Therefore, we suggest that the total C cycling capacity of benthic environments is primarily determined by total biomass.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-28
    Description: Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue incorporation of C and N and metabolic-derived C incorporation into the skeleton were traced following the additions of different food concentrations (100, 300, 1300 µg C L−1) and two ratios of suspended bacterial and algal biomass (1:1, 3:1). Respiration and tissue incorporation by L. pertusa increased markedly following exposure to higher food concentrations. The net growth efficiency of L. pertusa was low (0.08 ± 0.03), which is consistent with their slow growth rates. The contribution of algae and bacteria to total coral assimilation was proportional to the food mixture in the two lowest food concentrations, but algae were preferred over bacteria as food source at the highest food concentration. We argue that behavioural responses for these small-sized food particles, such as tentacle behaviour and mucus trapping, are more likely to explain the observed food selectivity as compared to physical-mechanical considerations. A comparison of the experimental food conditions to natural organic carbon concentrations above CWC reefs suggests that L. pertusa is well adapted to exploit temporal pulses of high organic matter concentrations in the bottom water caused by internal waves and downwelling events.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-27
    Description: Various human activities – including agriculture, water consumption, river damming, and aquaculture – have intensified over the last century. This has had a major impact on nitrogen (N) and phosphorus (P) cycling in global continental waters. In this study, we use a coupled nutrient-input–hydrology–in-stream nutrient retention model to quantitatively track the changes in the global freshwater N and P cycles over the 20th century. Our results suggest that, during this period, the global nutrient delivery to streams increased from 34 to 64 Tg N yr−1 and from 5 to 9 Tg P yr−1. Furthermore, in-stream retention and removal grew from 14 to 27 Tg N yr−1 and 3 to 5 Tg P yr−1. One of the major causes of increased retention is the growing number of reservoirs, which now account for 24 and 22 % of global N and P retention/removal in freshwater systems, respectively. This increase in nutrient retention could not balance the increase in nutrient delivery to rivers with the consequence that river nutrient transport to the ocean increased from 19 to 37 Tg N yr−1 and from 2 to 4 Tg P yr−1. Human activities have also led to a global increase in the molar N : P ratio in freshwater bodies.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-10-21
    Description: Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study, we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue incorporation of C and N and metabolically derived C incorporation into the skeleton were traced following the additions of different food concentrations (100, 300, 1300 µg C L−1) and two ratios of suspended bacterial and algal biomass (1 : 1, 3 : 1). Respiration and tissue incorporation by L. pertusa increased markedly following exposure to higher food concentrations. The net growth efficiency of L. pertusa was low (0.08 ± 0.03), which is consistent with its slow growth rate. The contribution of algae and bacteria to total coral assimilation was proportional to the food mixture in the two lowest food concentrations, but algae were preferred over bacteria as a food source at the highest food concentration. Similarly, the stoichiometric uptake of C and N was coupled in the low and medium food treatment, but was uncoupled in the high food treatment and indicated a comparatively higher uptake or retention of bacterial carbon as compared to algal nitrogen. We argue that behavioural responses for these small-sized food particles, such as tentacle behaviour, mucus trapping and physiological processing, are more likely to explain the observed food selectivity as compared to physical–mechanical considerations. A comparison of the experimental food conditions to natural organic carbon concentrations above CWC reefs suggests that L. pertusa is well adapted to exploit temporal pulses of high organic matter concentrations in the bottom water caused by internal waves and downwelling events.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-04
    Description: Marine sediments, particularly those located in estuarine and coastal zones, are key locations for the burial of organic carbon (C). However, organic C delivered to the sediment is subjected to a range of biological C-cycling processes, the rates and relative importance of which vary markedly between sites, and which are thus difficult to predict. In this study, stable isotope tracer experiments were used to quantify the processing of C by microbial and faunal communities in two contrasting Scottish estuarine sites: a subtidal, organic C rich site in Loch Etive with cohesive fine-grained sediment, and an intertidal, organic C poor site on an Ythan estuary sand flat with coarse-grained permeable sediments. In both experiments, sediment cores were recovered and amended with 13C labelled phytodetritus to quantify whole community respiration of the added C and to trace the isotope label into faunal and bacterial biomass. Similar respiration rates were found in Loch Etive and on the Ythan sand flat (0.64 ± 0.04 and 0.63 ± 0.12 mg C m−2h−1, respectively), which we attribute to the experiments being conducted at the same temperature. Faunal uptake of added C over the whole experiment was markedly greater in Loch Etive (204 ± 72 mg C m−2) than on the Ythan sand flat (0.96 ± 0.3 mg C m−2), and this difference was driven by a difference in both faunal biomass and activity. Conversely, bacterial C uptake over the whole experiment in Loch Etive was much lower than that on the Ythan sand flat (1.80 ± 1.66 and 127 ± 89 mg C m−2, respectively). This was not driven by differences in biomass, indicating that the bacterial community in the permeable Ythan sediments was particularly active, being responsible for 48 ± 18 % of total biologically processed C. This type of biological C processing appears to be favoured in permeable sediments. The total amount of biologically processed C was greatest in Loch Etive, largely due to greater faunal C uptake, which was in turn a result of higher faunal biomass. When comparing results from this study with a wide range of previously published isotope tracing experiments, we found a strong correlation between total benthic biomass (fauna plus bacteria) and total biological C processing rates. Therefore, we suggest that the total C-cycling capacity of benthic environments is primarily determined by total biomass.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...