ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-13
    Description: Paleoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation of the diffusion length using Power Spectral Densities (PSD) of the record of a single isotope species can be biased and is therefore not a reliable proxy for past temperature reconstruction. Using a second water isotope and calculating the difference in diffusion lengths between the two isotopes this problem is circumvented. We study the PSD method applied to two isotopes in detail and additionally present a new forward diffusion method for retrieving the differential diffusion length based on the Pearson correlation between the two isotope signals. The two methods are discussed and extensively tested on synthetic data which are generated in a Monte Carlo manner. We show that calibration of the PSD method with this synthetic data is necessary to be able to objectively determine the differential diffusion length. The correlation based method proofs to be a good alternative for the PSD method as it yields equal or somewhat higher precision than the PSD method. The use of synthetic data also allows us to estimate the accuracy and precision of the two methods and to choose the best sampling strategy to obtain past temperatures with the required precision. Additional to application to synthetic data the two methods are tested on stable isotope records from the EPICA ice core drilled in Dronning Maud Land, Antarctica, showing that reliable firn temperatures can be reconstructed with a typical uncertainty of 1.5 and 2 °C for the Holocene period and 2 and 2.5 °C for the last glacial period for the correlation and PSD method, respectively.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-07
    Description: Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have been accumulated in late Pleistocene and Holocene unconsolidated deposits. Their vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change is largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements, which are important for ecosystems and carbon cycling. Here we show, using geochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly stored in ground ice, especially in ice wedges, even before further degradation. In the Yedoma region ice wedges represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a fresh-water reservoir of 4172 km3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-20
    Description: Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L−1 (mean: 9.6 mg L−1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km2. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-12-21
    Description: This paper presents and discusses the texture, fabric and gas properties (contents of total gas, O2, N2, CO2, and CH4) of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia. The two ice wedges display contrasting structures: one being of relatively "clean" ice and the other showing clean ice at its centre as well as debris-rich ice on its sides (referred to as ice-sand wedge). A comparison of gas properties, crystal size, fabrics and stable isotope data (δ18O and δD) allows discriminating between three different facies of ice with specific paleoenvironmental signatures, suggesting different climatic conditions and rates of biological activity. More specifically, total gas content and composition reveal variable intensities of meltwater infiltration and show the impact of biological processes with contrasting contributions from anaerobic and aerobic conditions. Stable isotope data are shown to be valid for discussing changes in paleoenvironmental conditions and/or decipher different sources for the snow feeding into the ice wedges with time. Our data also give support to the previous assumption that the composite ice wedge was formed in Pleistocene and the ice wedge in Holocene times. This study sheds more light on the conditions of ice wedge growth under changing environmental conditions.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-20
    Description: Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation of the diffusion length using power spectral densities (PSDs) of the record of a single isotope species can be biased by uncertainties in spectral properties of the isotope signal prior to diffusion. By using a second water isotope and calculating the difference in diffusion lengths between the two isotopes, this problem is circumvented. We study the PSD method applied to two isotopes in detail and additionally present a new forward diffusion method for retrieving the differential diffusion length based on the Pearson correlation between the two isotope signals. The two methods are discussed and extensively tested on synthetic data which are generated in a Monte Carlo manner. We show that calibration of the PSD method with this synthetic data is necessary to be able to objectively determine the differential diffusion length. The correlation-based method proves to be a good alternative for the PSD method as it yields precision equal to or somewhat higher than the PSD method. The use of synthetic data also allows us to estimate the accuracy and precision of the two methods and to choose the best sampling strategy to obtain past temperatures with the required precision. In addition to application to synthetic data the two methods are tested on stable-isotope records from the EPICA (European Project for Ice Coring in Antarctica) ice core drilled in Dronning Maud Land, Antarctica, showing that reliable firn temperatures can be reconstructed with a typical uncertainty of 1.5 and 2 °C for the Holocene period and 2 and 2.5 °C for the last glacial period for the correlation and PSD method, respectively.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-04
    Description: This paper presents and discusses the texture, fabric, water stable isotopes (δ18O, δD) and gas properties (total gas content, O2, N2, Ar, CO2, and CH4 mixing ratios) of two climatically contrasted (Holocene vs. Pleistocene) ice wedges (IW-26 and IW-28) from Cape Mamontov Klyk, Laptev Sea, in northern Siberia. The two ice wedges display contrasting structures: one being of relatively "clean" ice and the other showing clean ice at its centre as well as debris-rich ice on both sides (referred to as "ice-sand wedge"). Our multiparametric approach allows discrimination between three different ice facies with specific signatures, suggesting different climatic and environmental conditions of formation and various intensities and nature of biological activity. More specifically, crystallography, total gas content and gas composition reveal variable levels of meltwater infiltration and contrasting contributions from anaerobic and aerobic conditions to the biological signatures. Stable isotope data are drawn on to discuss changes in paleoenvironmental conditions and in the temporal variation of the different moisture sources for the snow feeding into the ice wedges infillings. Our data set also supports the previous assumption that the ice wedge IW-28 was formed in Pleistocene and the ice wedge IW-26 in Holocene times. This study sheds more light on the conditions of ice wedge growth under changing environmental conditions.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-22
    Description: In order to investigate the climate variability in the northern Antarctic Peninsula region, this paper focuses on the relationship between stable isotope content of precipitation and firn, and main meteorological variables (air temperature, relative humidity, sea surface temperature, and sea ice extent). Between 2008 and 2010, we collected precipitation samples and retrieved firn cores from several key sites in this region. We conclude that the deuterium excess oscillation represents a robust indicator of the meteorological variability on a seasonal to sub-seasonal scale. Low absolute deuterium excess values and the synchronous variation of both deuterium excess and air temperature imply that the evaporation of moisture occurs in the adjacent Southern Ocean. The δ18O-air temperature relationship is complicated and significant only at a (multi)seasonal scale. Backward trajectory calculations show that air-parcels arriving at the region during precipitation events predominantly originate at the South Pacific Ocean and Bellingshausen Sea. These investigations will be used as a calibration for ongoing and future research in the area, suggesting that appropriate locations for future ice core research are located above 600 m a.s.l. We selected the Plateau Laclavere, Antarctic Peninsula as the most promising site for a deeper drilling campaign.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-17
    Description: In order to investigate the climate variability in the north Antarctic Peninsula region, this paper focuses on the relationship between stable isotope content of precipitation and firn, and main meteorological variables (air temperature, relative humidity, sea surface temperature, and sea ice extent). Between 2008 and 2010, we collected precipitation samples and retrieved firn cores from several key sites in this region. We conclude that the deuterium excess oscillation represents a robust indicator of the meteorological variability on a seasonal to sub-seasonal scale. Low absolute deuterium excess values and the synchronous variation of both deuterium excess and air temperature imply that the evaporation of moisture occurs in the adjacent Southern Ocean. The δ18O–air temperature relationship is complicated and significant only at a (multi) seasonal scale. Backward trajectory calculations show that air-parcels arriving at the region during precipitation events predominantly originate at the South Pacific Ocean and Bellingshausen Sea. These investigations will be used as a calibration for on-going and future research in the area, suggesting that appropriate locations are located above 600 m a.s.l. We selected the Plateau Laclavere, Antarctic Peninsula as the most promising site for a deeper drilling campaign.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-21
    Description: Figures of merit condensing the performance parameters of radiation sensors such as responsivity, noise equivalent power, and time constant in a single number can be useful for rating the performance of a particular sensor in comparison to other ones or to fundamental performance limits. The classification system and the figures of merit of radiation sensors introduced by R. C. Jones are revisited for thermal radiation sensors with the focus on thermopiles and bolometers. As a result it is stated that radiation thermopiles and bolometers should be classified differently: type III detectors for thermopiles vs. type II detectors for bolometers. Modified figures of merit are suggested and relations between them given. The figures of merit are applied in an overview on state-of-the-art thermopiles and bolometers operated at room temperature.
    Print ISSN: 2194-8771
    Electronic ISSN: 2194-878X
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-08
    Description: Stable isotope data from lipid biomarkers and diatom silica recovered from lake sediment cores hold great promise for paleoclimate and paleohydrological reconstructions. However, these records rely on accurate calibration with modern precipitation and hydrologic processes and only limited data exist on the controls on the δD values for n-alkanoic acids from plant leaf waxes. Here we investigate the stable isotopic composition of modern precipitation, streams, lake water and ice cover, and use these data to constrain isotope systematics of the Lake El'gygytgyn Basin hydrology. Compound-specific hydrogen isotope ratios determined from n-alkanoic acids from modern vegetation are compared with modern precipitation and lake core top sediments. Multi-species net (apparent) fractionation values between source water (precipitation) and modern vegetation (e.g., ϵwax/precip mean value is −107 ± 12‰) agree with previous results and suggest a consistent offset between source waters and the δD values of alkanoic acids. We conclude that although there may be some bias towards a winter precipitation signal, overall δD values from leaf wax n-alkanoic acids record annual average precipitation within the El'gygytgyn Basin. A net fractionation calculated for 200-yr-integrated lake sediments yields ϵ30/precip = −96 ± 8‰ and can provide robust net "apparent" fractionation to be used in future paleohydrological reconstructions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...