ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2016-09-20
    Description: We have derived ozone and temperature responses to solar variability over a solar cycle, from 2002 to 2014 at 20–60 km and 48° S–48° N, based on data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite. Simultaneous results for ozone and temperature with this kind of spatial coverage have not been previously available, and they provide the opportunity to study correlations between ozone and temperature responses. In previous studies, there has not been general agreement on the details or, at times, even the broad behavior of the responses to decadal solar variability. New results from a different dataset should supply new information on this important and interesting subject. A multiple regression is applied to obtain responses as a function of the solar 10.7 cm flux. Positive responses mean that they are larger at solar maximum than at solar minimum of the solar cycle. Both ozone and temperature responses are found be positive or negative, depending on location. Generally, from  ∼  25 to 60 km, the ozone and temperature responses are mostly out of phase (negatively correlated) with each other as a function of solar variability, with some exceptions in the lower altitudes. These negative correlations are maintained even though the individual ozone (temperature) responses can change signs as a function of altitude and latitude, because the corresponding temperature (ozone) responses change signs in step with each other. From  ∼  50 to 60 km, ozone responses are relatively small, varying from  ∼  −1 to ∼  2 % 100 sfu−1 (solar flux units), while temperature responses can approach  ∼  2 °K 100 sfu−1. From  ∼  25 to ∼  40 km, the ozone responses have become mostly positive at all latitudes and approach a maximum of  ∼  5 % 100 sfu−1 near the Equator and ∼  30–35 km. In contrast, at low latitudes, the temperature responses have become negative but also reach a local maximum (near 32 km) in magnitude. The ozone and temperature responses remain mostly out of phase, with isolated exceptions at midlatitudes between  ∼  25 and 45 km. The general negative correlations are consistent with the idea that photochemistry is more in control in the upper stratosphere and lower mesosphere. The correlation coefficients between the solar 10.7 cm flux and the ozone and temperature themselves from 2002 to 2014 are positive (negative) in regions where the responses are positive (negative). This supports our results since the correlations are independent of the multiple regression used to derive the responses. We also compare with previous results.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-02
    Description: There is evidence that the ozone and temperature responses to the solar cycle of ∼11 years depend on the local times of measurements. Here we present relevant results based on SABER data over a full diurnal cycle, which were not previously available. In this area, almost all satellite data used are measured at only one or two fixed local times, which can differ among various satellites. Consequently, estimates of responses can be different depending on the specific data set. Furthermore, over years, due to orbital drift, the local times of the measurements of some satellites have also drifted. In contrast, SABER makes measurements at various local times, providing the opportunity to estimate diurnal variations over 24 h. We can then also estimate responses to the solar cycle over both a diurnal cycle and at the fixed local times of specific satellite data for comparison. Responses derived in this study, based on zonal means of SABER measurements, agree favorably with previous studies based on data from the HALOE instrument, which only measured data at sunrise and sunset, thereby supporting the analysis of both studies. We find that for ozone above ∼40 km, zonal means reflecting specific local times (e.g., 6, 12, 18, 24 LST – local solar time) lead to different values of responses, and to different responses based on zonal means that are also averages over the 24 h local time period, as in 3-D models. For temperature, the effects of diurnal variations on the responses are not negligible even at ∼30 km and above. We also considered the consequences of local time variations due to orbital drifts of certain operational satellites, and, for both ozone and temperature, their effects can be significant above ∼30 km. Previous studies based on other satellite data do not describe the treatment, if any, of local times. Some studies also analyzed data merged from different sources, with measurements made at different local times. Generally, the results of these studies do not agree very well among themselves. Although responses are a function of diurnal variations, this is not to say that they are the major reason for the differences, as there are likely other data-related issues. The effects due to satellite orbital drift may explain some unexpected variations in the responses, especially above 40 km.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-01
    Description: We have derived the behavior of decadal temperature trends over the 24 h of local time, based on zonal averages of SABER data, for the years 2012 to 2014, from 20 to 100 km, within 48∘ of the Equator. Similar results have not been available previously. We find that the temperature trends, based on zonal mean measurements at a fixed local time, can be different from those based on measurements made at a different fixed local time. The trends can vary significantly in local time, even from hour to hour. This agrees with some findings based on nighttime lidar measurements. This knowledge is relevant because the large majority of temperature measurements, especially in the stratosphere, are made by instruments on sun-synchronous operational satellites which measure at only one or two fixed local times, for the duration of their missions. In these cases, the zonal mean trends derived from various satellite data are tied to the specific local times at which each instrument samples the data, and the trends are then also biased by the local time. Consequently, care is needed in comparing trends based on various measurements with each other, unless the data are all measured at the same local time. Similar caution is needed when comparing with models, since the zonal means from 3D models reflect averages over both longitude and the 24 h of local time. Consideration is also needed in merging data from various sources to produce generic, continuous, longer-term records. Diurnal variations of temperature themselves, in the form of thermal tides, are well known and are due to absorption of solar radiation. We find that at least part of the reason that temperature trends are different for different local times is that the amplitudes and phases of the tides themselves follow trends over the same time span of the data. Many of the past efforts have focused on the temperature values with local time when merging data from various sources and on the effect of unintended satellite orbital drifts, which result in drifting local times at which the temperatures are measured. However, the effect of local time on trends has not been well researched. We also derive estimates of trends by simulating the drift of local time due to drifting orbits. Our comparisons with results found by others (Advanced Microwave Sounding Unit, AMSU; lidar) are favorable and informative. They may explain, at least in part, the bridge between results based on daytime AMSU data and nighttime lidar measurements. However, these examples do not form a pattern, and more comparisons and study are needed.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...