ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-01
    Description: Sleep is the longest and most continuous behavioral phase in the 24 h cycle of mammals. However, selection of postures, substrates, and tree parts during sleep has not been adequately explored, as well as their evolutionary consequences. The present study investigates postural behavior, substrate, and tree part use during sleep in three howler species (A. palliata, A. macconnelli, and A. caraya) in Nicaragua, French Guiana, and Argentina. All three species were consistent in the use of a crouched ball-like sit-in posture on large, horizontal, unramified, or bifurcated substrates, and in avoiding the periphery of tree crowns. The regularities of these sleeping patterns are very likely functionally associated with protection from potential predators and extreme weather conditions, biomechanical stability, thermoregulation, and enhancement of the digestive process of hard-to-decompose plant material.
    Print ISSN: 2363-4707
    Electronic ISSN: 2363-4715
    Topics: Biology
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-30
    Description: We analyze a multi-year record of aerosol smoke plume heights derived from observations over North America made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time). The largest plumes are found over the boreal region (median values of ∼850 m height, 24 km length and 940 m thickness), whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ∼530 m height, 12 km length and 550–640 m thickness). The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12%) of plumes from fires are injected above the boundary layer (BL), consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (〉83%) are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT) exhibit larger FRP values (1620–1640 MW) than those remaining within the BL (174–465 MW). Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 thickness). The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June–July. MODIS FRP measurements indicate that larger summertime heights are the result of higher fire intensity, likely due to more severe fire weather during these months. This work demonstrates the significant effect of fire radiative heat and atmospheric structure on the ultimate rise of fire emissions, and underlines the importance of considering such physical processes in modeling smoke dispersion.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-06
    Description: On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-10
    Description: On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-02-15
    Description: We analyze an extensive record of aerosol smoke plume heights derived from observations over North America for the fire seasons of 2002 and 2004–2007 made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time). The largest plumes are found over the boreal region (median values of ~850 m height, 24 km length and 940 m thickness), whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ~530 m height, 12 km length and 550–640 m thickness). The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12%) of plumes from fires are injected above the boundary layer (BL), consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (〉83%) are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT) exhibit larger FRP values (1620–1640 MW) than those remaining within the BL (174–465 MW). Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 m thickness). The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June–July. MODIS FRP measurements indicate that larger summertime heights are the result of higher fire intensity, likely due to more severe fire weather during these months. This work demonstrates the significant effect of fire intensity and atmospheric structure on the ultimate rise of fire emissions, and underlines the importance of considering such physical processes in modeling smoke dispersion.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-16
    Description: We present an aerosol – cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (〉85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles 〉70 nm. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble (κorg=0.02), leading to a mean total κ, κtot, of 0.33 ± 0.13. However, several settings led to closure and κorg=0.2 is found to be an upper limit at 0.1% supersaturation. κorg≤0.2 leads to a κtot range of 0.33 ± 013 to 0.50 ± 0.11. Thus, the organic material ranges from being sparingly soluble to effectively insoluble. These results suggest that an increase in organic mass fraction in particles of a certain size would lead to a suppression of the Arctic CCN activity.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-12-20
    Description: In situ measurements of carbon monoxide (CO) and ozone (O3) at the Pico Mountain Observatory (PMO) located in the Azores, Portugal, are analyzed together with results from an atmospheric chemical transport model (GEOS-Chem) and satellite remote sensing data (AIRS (Atmospheric Infrared Sounder) for CO, and TES (Tropospheric Emission Spectrometer) for O3) to examine the evolution of free-troposphere CO and O3 over the North Atlantic for 2001–2011. GEOS-Chem captured the seasonal cycles for CO and O3 well but significantly underestimated the mixing ratios of CO, particularly in spring. Statistically significant (using a significance level of 0.05) decreasing trends were found for both CO and O3 based on harmonic regression analysis of the measurement data. The best estimates of the possible trends for CO and O3 measurements are −0.31 ± 0.30 (2-σ) ppbv yr−1 and −0.21 ± 0.11 (2-σ) ppbv yr−1, respectively. Similar decreasing trends for both species were obtained with GEOS-Chem simulation results. The most important factor contributing to the decreases in CO and O3 at PMO over the past decade is the decline in anthropogenic emissions from North America, which more than compensate for the impacts from increasing Asian emissions. It is likely that climate change in the past decade has also affected the intercontinental transport of O3.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-08
    Description: Due to its effects on the atmospheric lifetime of methane, the burdens of tropospheric ozone and growth of secondary organic aerosol, isoprene is central among the biogenic compounds that need to be taken into account for assessment of anthropogenic air pollution-climate change interactions. Lack of process-understanding regarding leaf isoprene production as well as of suitable observations to constrain and evaluate regional or global simulation results add large uncertainties to past, present and future emissions estimates. Focusing on contemporary climate conditions, we compare three global isoprene models that differ in their representation of vegetation and isoprene emission algorithm. We specifically aim to investigate the between- and within model variation that is introduced by varying some of the models' main features, and to determine which spatial and/or temporal features are robust between models and different experimental set-ups. In their individual standard configurations, the models broadly agree with respect to the chief isoprene sources and emission seasonality, with maximum monthly emission rates around 20–25 Tg C, when averaged by 30-degree latitudinal bands. They also indicate relatively small (approximately 5 to 10 % around the mean) interannual variability of total global emissions. The models are sensitive to changes in one or more of their main model components and drivers (e.g., underlying vegetation fields, climate input) which can yield increases or decreases in total annual emissions of cumulatively by more than 30 %. Varying drivers also strongly alters the seasonal emission pattern. The variable response needs to be interpreted in view of the vegetation emission capacities, as well as diverging absolute and regional distribution of light, radiation and temperature, but the direction of the simulated emission changes was not as uniform as anticipated. Our results highlight the need for modellers to evaluate their implementations of isoprene emission models carefully when performing simulations that use non-standard emission model configurations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-02
    Description: We analyze the record of aerosol optical depth (AOD) measured by the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite in combination with surface PM2.5 to investigate the impact of fires on aerosol loading and air quality over Colorado from 2000 to 2012, and to evaluate the contribution of local versus transported smoke. Fire smoke contributed significantly to the AOD levels observed over Colorado. During the worst fire seasons of 2002 and 2012, average MODIS AOD over the Colorado Front Range corridor were 20–50% larger than the other 11 yr studied. Surface PM2.5 was also unusually elevated during fire events and concentrations were in many occasions above the daily National Ambient Air Quality Standard (35 μg m−3) and even reached locally unhealthy levels (〉 100 μg m−3) over populated areas during the 2012 High Park fire and the 2002 Hayman fire. Over the 13 yr examined, long-range transport of smoke from northwestern US and even California (〉 1500 km distance) occurred often and affected AOD and surface PM2.5. During most of the transport events, MODIS AOD and surface PM2.5 were reasonable correlated (r2 = 0.2–0.9), indicating that smoke subsided into the Colorado boundary layer and reached surface levels. However, that is not always the case since at least one event of AOD enhancement was disconnected from the surface (r2
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-12-21
    Description: The aim of the work presented here was to detect BrO in the marine boundary layer over the Eastern North-Atlantic by Multi AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) of scattered sunlight. With this technique, information about the concentration and the vertical profile of trace gases in the atmosphere can be gained. BrO can be formed in the marine atmosphere by degradation of biogenic organohalogens or by oxidation of bromide in sea salt aerosol. BrO influences the chemistry in marine air in many ways, e.g. since it catalytically destroys ozone, changes the NO2/NO-ratio as well as the OH/HO2-ratio and oxidises DMS. However, the abundance and the significance of BrO in the marine atmosphere is not yet fully understood. We report on data collected during a ship cruise, which took place along the West African Coast in February 2007, within the framework of the Surface Ocean PRocesses in the ANthropocene project (SOPRAN). Tropospheric BrO could be detected during this cruise at peak mixing ratios of (10.2±3.7) ppt at an assumed layer height of 1 km on 18 February 2007. Furthermore, it was found that the mean BrO concentrations increased when cruising close to the African Coast suggesting that at least part of the BrO might have originated from there.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...