ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-05
    Description: Flood databases of high spatio-temporal resolution are a necessary tool for proper spatial planning, especially in areas with high levels of exposure and danger to floods. This study presents the preliminary results of the Spanish Mediterranean Coastal Flood (SMC-Flood) database covering the municipalities in this region. This database collects information on flood cases that occurred between 1960 and 2015 by systematically consulting the digital archives of the main newspapers in the study area. The search for flood information was conducted by means of using links between municipality names and seven keywords that correspond to the most common ways of referring to a situation that is likely to describe a flood in Spain. This methodology has enabled the reconstruction of 3008 flood cases at a municipal scale with daily resolution while gathering information on the types of damage, intensity, severity and area affected. The spatio-temporal analysis of the data reveals hotspots where flood cases are especially intense and damaging when compared to highly developed areas where the frequency of flood cases is very high. This situation is especially worrying insofar as we have detected a growing trend in the frequency and area affected by flood cases. However, one positive aspect is that the intensity and severity of flood cases follows a falling trend. The main novelty lies in the fact that the high-resolution spatial analysis has made it possible to detect a clear latitudinal gradient of growing intensity and severity in a north–south direction. This pattern calls for new actions by the coastal municipal authorities of southern Spain for adaptation to a more complex flood scenario.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-17
    Description: Floods are the natural disaster that affects the greatest number of people and causes the highest economic losses in the world. However, some areas, such as the Mediterranean Coast of the Iberian Peninsula, are especially exposed to this natural hazard. The problem takes on even more relevance when a changing social dynamic is added to the natural context. With a view to accomplishing correct spatial planning in the light of the flood hazard, it is necessary to carry out an exhaustive analysis of the spatiotemporal variability of floods with a scale of analysis that allows the detection of changes and the search for causality. Databases compiled from journalistic documentation offer these possibilities of analysis and represent a vital tool for correct spatial planning. In this study we present the SMC (Spanish Mediterranean Coast)-Flood Database for the municipalities of the Mediterranean coast of mainland Spain. This database has enabled the reconstruction of 3008 cases of flooding on a municipal scale and with daily resolution, with information on the type of damages, intensity and area affected. The spatiotemporal analysis of the data reveals black spots where floods are especially intense and damaging, compared to highly-developed areas where the frequency of the floods is very high. This situation is especially worrying, insofar as we have detected a growing trend in the frequency and area affected by floods. However, it is positive that the intensity and severity of the floods follows a falling trend. The main novelty lies in the fact that the high-resolution spatial analysis has made it possible to detect a clear latitudinal gradient of growing intensity and severity with a north–south direction. This pattern subjects the coastal municipalities of the south of Spain to a complicated adaptation scenario.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-25
    Description: Currently, climate change is a major concern around the world, especially because of the uncertainty associated with its possible consequences for society. Among these can be highlighted the fluvial alterations in basins whose flows depend on groundwater discharges and snow melt. This is the case of the headwaters of the Tagus River Basin, whose water resources, besides being essential for water uses within this basin, are susceptible to being transferred to the Segura River Basin (both basins are in the Iberian Peninsula). This work studies the possible effects that the latest climate change scenarios may have on this transfer, one of the most important in southern Europe. In the first place, the possible alterations of the water cycle of the donor basin were estimated. To do this, a hydrological model was calibrated. Then, with this model, three climatic scenarios were simulated, one without climate change and two projections under climate change (Representative Concentration Representative 4.5 (RCP 4.5) and RCP 8.5). The results of these three hydrological modelling scenarios were used to determine the possible flows that could be transferred from the Tagus River Basin to the Segura River Basin, by simulating the water resource exploitation system of the Tagus headwaters. These hydrological modelling predict, for the simulated climate change scenarios, important reductions in the snowfalls and snow covers, the recharge of aquifers and the available water resources. So, the headwaters of the Tagus River Basin would be the loss of part of its natural capacity for regulation. These changes in the water cycle for the climate change scenarios used would imply a reduction of around 80% in the possible flows that could be transferred to the Segura Basin, with respect to a scenario without climate change. The loss of water resources for the Segura River Basin would mean, if no alternative measures were taken, an economic loss of 330–380 million euro per year, due principally to decreased agricultural production.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-13
    Description: Currently, climate change is a major concern around the world, especially because of the uncertainty associated with its possible consequences for society. Among them, fluvial alterations can be highlighted in basins whose flows depend on groundwater discharges and snowmelt. This is the case of the headwaters of the Tagus River basin, whose water resources, besides being essential for water uses within this basin, are susceptible to being transferred to the Segura River basin (both basins are in the Iberian Peninsula). This work studies the possible effects that the latest climate change scenarios may have on this transfer, one of the most important ones in southern Europe. In the first place, the possible alterations of the water cycle of the donor basin were estimated. To do this, a hydrological model was calibrated. Then, with this model, three climatic scenarios were simulated, one without climate change and two projections under climate change (Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5)). The results of these three hydrological modelling scenarios were used to determine the possible flows that could be transferred from the Tagus River basin to the Segura River basin, by simulating the water resource exploitation system of the Tagus headwaters. The calibrated hydrological model predicts, for the simulated climate change scenarios, important reductions in the snowfalls and snow covers, the recharge of aquifers, and the available water resources. So, the headwaters of the Tagus River basin would lose part of its natural capacity for regulation. These changes in the water cycle for the climate change scenarios used would imply a reduction of around 70 %–79 % in the possible flows that could be transferred to the Segura basin, with respect to a scenario without climate change. The loss of water resources for the Segura River basin would mean, if no alternative measures were taken, an economic loss of EUR 380–425 million per year, due principally to decreased agricultural production.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...