ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-02-28
    Description: The extraordinarily warm and dry summer experienced in SW Europe in 2003 provides an interesting case study for the analysis of the response of regional-scale vegetation variables to drier and hotter conditions. SW Europe includes a boundary between phytogeographic and climatic regions (Oceanic and Mediterranean) that differ in terms of summer precipitation, which let us compare the response of different vegetation types. In addition, some scenarios predict summer conditions such as those of 2003 to be common by the latter decades of the 21st century in this region. We have analyzed a monthly series of regional fields of normalized difference vegetation index from the VEGETATION-SPOT5 instrument, from 1999 to 2003. We show that negative anomalies of vegetation index in summer 2003 were larger for herbaceous vegetation of the Oceanic climate region and for deciduous forests. The vegetation index of August 2003 in the Mediterranean climate region was also significantly lower than normal values in August 1999–2002, albeit the anomalies were small in absolute value. We compared August NDVI, as a measure of the vegetation response, to the difference between total summer precipitation and total summer potential evapotranspiration, as a measure of atmospheric water stress. Our results indicate that water stress is a major factor structuring the geographic variability of NDVI in this region. In accordance with these results, the analysis of the data of 2003 indicate that the increased water stress was a key factor of the observed anomalies of vegetation index.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-16
    Description: Whether the global runoff (or freshwater discharge from land to the ocean) is currently increasing and the global water cycle is intensifying is still a controversial issue. Here we compute land–atmosphere and ocean–atmosphere water budgets and derive two independent estimates of the global runoff over the period 1993–2009. Water storage variations in the land, ocean and atmosphere reservoirs are estimated from different types of data sets: atmospheric reanalyses, land surface models, satellite altimetry and in situ ocean temperature data (the difference between altimetry based global mean sea level and ocean thermal expansion providing an estimate of the ocean mass component). These data sets are first validated using independent data, and then the global runoff is computed from the two methods. Results for the global runoff show a very good correlation between both estimates. More importantly, no significant trend is observed over the whole period. Besides, the global runoff appears to be clearly impacted by large-scale climate phenomena such as major ENSO events. To infer this, we compute the zonal runoff over four latitudinal bands and set up for each band a new index (combined runoff index) obtained by optimization of linear combinations of various climate indices. Results show that, in particular, the intertropical and northern mid-latitude runoffs are mainly driven by ENSO and the Atlantic multidecadal oscillation (AMO) with opposite behavior. Indeed, the zonal runoff in the intertropical zone decreases during major El Niño events, whereas it increases in the northern mid-latitudes, suggesting that water masses over land are shifted northward/southward during El Niño/La Niña. In addition to this study, we propose an innovative method to estimate the global ocean thermal expansion. The method is based on the assumption that the difference between both runoff estimates is mainly due to the thermal expansion term not accounted for in the estimation of the ocean mass. We find that our reconstructed thermal expansion time series compares well with two existing data sets in terms of year-to-year fluctuations but somewhat differs on longer (multi-year) time scales. Possible explanations include non negligible steric variations from the deep ocean.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-09-26
    Description: The extraordinarily warm and dry summer experienced in SW Europe in 2003 provides an interesting case study for the analysis of the response of regional-scale vegetation variables to drier and hotter conditions. SW Europe includes a boundary between phytogeographic and climatic regions (Oceanic and Mediterranean) that differ in terms of summer precipitation, which let us compare the response of different vegetation types. In addition, some scenarios predict summer conditions such as those of 2003 to be common by the latter decades of the 21st century in this region. We have analyzed a monthly series of regional fields of normalized difference vegetation index from the VEGETATION-SPOT5 instrument, from 1999 to 2003. We show that negative anomalies of vegetation index in summer 2003 were larger for herbaceous vegetation of the Oceanic climate region and for deciduous forests. The vegetation index of August 2003 in the Mediterranean climate region was also significantly lower than normal values in August 1999–2002, albeit the anomalies were small in absolute value. We compared August NDVI, as a measure of the vegetation response, to the difference between total summer precipitation and total summer potential evapotranspiration, as a measure of atmospheric water stress. Our results indicate that water stress is a major factor structuring the geographic variability of NDVI in this region. In accordance with these results, the analysis of the data of 2003 indicate that the increased water stress was a key factor of the observed anomalies of vegetation index.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-11
    Description: Whether the global runoff (or freshwater discharge from land to the ocean) is currently increasing and the global water cycle is intensifying is still a controversial issue. Here we compute land-atmosphere and ocean-atmosphere water budgets and derive two independent estimates of the global runoff over the period 1993–2009. Water storage variations in the land, ocean and atmosphere reservoirs are estimated from different types of datasets: atmospheric reanalyses, land surface models, satellite altimetry and in situ ocean temperature data (the difference between altimetry based global mean sea level and ocean thermal expansion providing an estimate of the ocean mass component). Results for the global runoff from the two methods show a very good correlation between both estimates. More importantly, no significant trend is observed over the whole period. Besides, the global runoff appears to be clearly impacted by large-scale climate phenomena such as major ENSO events. To infer this, we compute the zonal runoff over four latitudinal bands and set up for each band a new index (Combined Runoff Index) obtained by optimization of linear combinations of various climate indices. Results show that, in particular, the intertropical and northern mid-latitude runoffs are mainly driven by ENSO and the Atlantic Multidecadal Oscillation (AMO) with opposite behavior. Indeed, the zonal runoff in the intertropical zone decreases during major El Niño events whereas it increases in the northern mid-latitudes, suggesting that water masses over land are shifted northward/southward during El Niño/La Niña. In addition to this study, we propose an innovative method to estimate the global ocean thermal expansion. The method is based on the assumption that the difference between both runoff estimates is mainly due the thermal expansion term not accounted for in the estimation of the ocean mass. Comparison of our reconstructed thermal expansion with two existing datasets shows the relevance of this new method.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...