ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (3)
Collection
Years
  • 1
    Publication Date: 2019-08-30
    Description: Recently launched multichannel geostationary Earth orbit (GEO) satellite sensors, such as the Geostationary Ocean Color Imager (GOCI) and the Advanced Himawari Imager (AHI), provide aerosol products over East Asia with high accuracy, which enables the monitoring of rapid diurnal variations and the transboundary transport of aerosols. Most aerosol studies to date have used low Earth orbit (LEO) satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR), with a maximum of one or two overpass daylight times per day from midlatitudes to low latitudes. Thus, the demand for new GEO observations with high temporal resolution and improved accuracy has been significant. In this study the latest versions of aerosol optical depth (AOD) products from three LEO sensors – MODIS (Dark Target, Deep Blue, and MAIAC), MISR, and the Visible/Infrared Imager Radiometer Suite (VIIRS), along with two GEO sensors (GOCI and AHI), are validated, compared, and integrated for a period during the Korea–United States Air Quality Study (KORUS-AQ) field campaign from 1 May to 12 June 2016 over East Asia. The AOD products analyzed here generally have high accuracy with high R (0.84–0.93) and low RMSE (0.12–0.17), but their error characteristics differ according to the use of several different surface-reflectance estimation methods. High-accuracy near-real-time GOCI and AHI measurements facilitate the detection of rapid AOD changes, such as smoke aerosol transport from Russia to Japan on 18–21 May 2016, heavy pollution transport from China to the Korean Peninsula on 25 May 2016, and local emission transport from the Seoul Metropolitan Area to the Yellow Sea in South Korea on 5 June 2016. These high-temporal-resolution GEO measurements result in more representative daily AOD values and make a greater contribution to a combined daily AOD product assembled by median value selection with a 0.5∘×0.5∘ grid resolution. The combined AOD is spatially continuous and has a greater number of pixels with high accuracy (fraction within expected error range of 0.61) than individual products. This study characterizes aerosol measurements from LEO and GEO satellites currently in operation over East Asia, and the results presented here can be used to evaluate satellite measurement bias and air quality models.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-14
    Description: Daily total column ozone (TCO) measured using the Pandora spectrophotometer (#19) was intercompared with data from the Dobson (#124) and Brewer (#148) spectrophotometers, as well as from the Ozone Monitoring Instrument (OMI), over the 2-year period between March 2012 and March 2014 at Yonsei University, Seoul, Korea. The Pandora TCO measurements are closely correlated with those from the Dobson, Brewer, and OMI instruments with regression coefficients (slopes) of 0.95, 1.00, 0.98 (OMI-TOMS), and 0.97 (OMI-DOAS), respectively, and determination coefficients (R2) of 0.95, 0.97, 0.96 (OMI-TOMS), and 0.95 (OMI-DOAS), respectively. In particular, they show a close agreement with the Brewer TCO measurements, with slope and R2 values of 1.00 and 0.97, respectively. The difference between the Pandora and Dobson data can be explained by smaller amount of Dobson data available to calculate the daily averages, observation times, solar zenith angles, SO2 effect, temperature, and humidity between the two datasets. The difference in the results obtained from the Pandora instrument and Ozone Monitoring Instrument-Differential Optical Absorption Spectroscopy (OMI-DOAS algorithm) can be explained by the dependence on seasonal variations of about ± 2 % and solar zenith angle leading to overestimation by 5 % of OMI-DOAS measurements. For the Dobson measurements in particular, the difference caused by the inconsistency in observation times when compared with the Pandora measurements was up to 12.5 % on 22 June 2013 because of diurnal variations in the TCO values. However, despite these various differences and discrepancies, the daily TCO values measured by the four instruments during the 2-year study period are accurate and closely correlated.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-18
    Description: Recently launched multi-channel geostationary-Earth-orbit (GEO) satellite sensors such as the Geostationary Ocean Color Imager (GOCI) and the Advanced Himawari Imager (AHI) provide aerosol products over East Asia with high accuracy, which enables the monitoring of rapid diurnal variations and the transboundary transport of aerosols. Most aerosol studies to date have used low-Earth-orbit (LEO) satellite sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) with a maximum of one or two overpass daylight times per day at mid- to low latitudes. Thus, the demand for new GEO observations with high temporal resolution and improved accuracy has been significant. In this study the aerosol optical depth (AOD) products from three LEO sensors – MODIS, MISR, and the Visible/Infrared Imager Radiometer Suite (VIIRS) – along with two GEO sensors – GOCI and AHI – are validated, compared and integrated for the period during the Korea–United Sates Air Quality Study (KORUS-AQ) field campaign from 1 May to 12 June 2016 over East Asia. The AOD products analyzed here generally have high accuracy, but their error characteristics differ according to the use of several different surface-reflectance estimation methods plus differences in cloud screening. High-accuracy near-real-time GOCI and AHI measurements facilitate the detection of rapid AOD changes, such as smoke aerosol transport from Russia to Japan on 18–21 May 2016, heavy pollution transport from China to Korea on 25 May 2016, and local emission transport from the Seoul Metropolitan Area to the Yellow Sea in Korea on 5 June 2016. These high-temporal-resolution GEO measurements result in more-representative daily AOD values and make a greater contribution to a combined daily AOD product assembled by median-value selection with a 0.5° × 0.5° grid resolution. The combined AOD is more spatially continuous and of higher accuracy than the individual products. This study characterizes aerosol measurements from LEO and GEO satellites currently in operation over East Asia, and results presented here can be used to evaluate satellite measurement bias and air-quality models.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...