ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-04-05
    Description: Black carbon (BC), which is formed from the incomplete combustion of fuel sources (mainly fossil fuel, biofuel and open biomass burning), is a chemically inert optical absorber in the atmosphere. It has significant impacts on global climate, regional air quality and human health. During transportation, its physical and chemical characteristics as well as its sources change dramatically. To investigate the properties of BC (i.e., mass concentration, sources and optical properties) during intra-regional transport between the southern edge of the North China Plain (SE-NCP) and central China (CC), simultaneous BC observations were conducted in a megacity (Wuhan – WH) in CC, in three borderline cities (Xiangyang – XY, Suixian – SX and Hong'an – HA; from west to east) between the SE-NCP and CC, and in a city (Luohe – LH) in the SE-NCP during typical winter haze episodes. Using an Aethalometer, the highest equivalent BC (eBC) mass concentrations and the highest aerosol absorption coefficients (σabs) were found in LH in the SE-NCP, followed by the borderline cities (XY, SX and HA) and WH. The levels, sources, optical properties (i.e., σabs and absorption Ångström exponent, AAE) and geographic origins of eBC were different between clean and polluted periods. Compared with clean days, higher eBC levels (26.4 %–163 % higher) and σabs (18.2 %–236 % higher) were found during pollution episodes due to the increased combustion of fossil fuels (increased by 51.1 %–277 %), which was supported by the decreased AAE values (decreased by 7.40 %–12.7 %). The conditional bivariate probability function (CBPF) and concentration-weighted trajectory (CWT) results showed that the geographic origins of biomass burning (BCbb) and fossil fuel (BCff) combustion-derived BC were different. Air parcels from the south dominated for border sites during clean days, with contributions of 46.0 %–58.2 %, whereas trajectories from the northeast showed higher contributions (37.5 %–51.2 %) during pollution episodes. At the SE-NCP site (LH), transboundary influences from the south (CC) exhibited a more frequent impact (with air parcels from this direction comprising 47.8 % of all parcels) on the ambient eBC levels during pollution episodes. At WH, eBC was mainly from the northeast transport route throughout the observation period. Two transportation cases showed that the mass concentrations of eBC, BCff and σabs all increased, from upwind to downwind, whereas AAE decreased. This study highlights that intra-regional prevention and control for dominant sources at each specific site should be considered in order to improve the regional air quality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-05
    Description: Oil and natural gas are important for energy supply around the world. The exploring, drilling, transportation and processing in oil and gas regions can release a lot of volatile organic compounds (VOCs). To understand the VOC levels, compositions and sources in such regions, an oil and gas station in northwest China was chosen as the research site and 57 VOCs designated as the photochemical precursors were continuously measured for an entire year (September 2014–August 2015) using an online monitoring system. The average concentration of total VOCs was 297 ± 372 ppbv and the main contributor was alkanes, accounting for 87.5 % of the total VOCs. According to the propylene-equivalent concentration and maximum incremental reactivity methods, alkanes were identified as the most important VOC groups for the ozone formation potential. Positive matrix factorization (PMF) analysis showed that the annual average contributions from natural gas, fuel evaporation, combustion sources, oil refining processes and asphalt (anthropogenic and natural sources) to the total VOCs were 62.6 ± 3.04, 21.5 ± .99, 10.9 ± 1.57, 3.8 ± 0.50 and 1.3 ± 0.69 %, respectively. The five identified VOC sources exhibited various diurnal patterns due to their different emission patterns and the impact of meteorological parameters. Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models based on backward trajectory analysis indicated that the five identified sources had similar geographic origins. Raster analysis based on CWT analysis indicated that the local emissions contributed 48.4–74.6 % to the total VOCs. Based on the high-resolution observation data, this study clearly described and analyzed the temporal variation in VOC emission characteristics at a typical oil and gas field, which exhibited different VOC levels, compositions and origins compared with those in urban and industrial areas.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-13
    Description: Oil and natural gas are important energy supply around the world. The exploring, drilling, transportation, and processing in oil-gas regions can release abundant volatile organic compounds (VOCs). To understand the atmospheric behaviors of VOCs in such region, the fifty-six VOCs designed as the photochemical precursors by the United State Environmental Protection Agency were continuously measured for an entire year (September 2014–August 2015) by a set of on-line monitor system at an oil-gas station in northwest China. The VOC concentrations in this study were 1–50 times higher than those measured in many other urban and industrial regions. The VOC compositions were also different from other studies with alkanes contributing up to 87.5 % of the total VOCs in this study. According to the propylene-equivalent concentration and maximum incremental reactivity method, alkanes were identified as the most important VOC groups to the ozone formation potential. The photochemical reaction, meteorological parameters (temperature, relative humidity, pressure, and wind speed) and boundary layer height were found to influence the temporal variations of VOCs at different time scales. The positive matrix factorization analysis showed that the natural gas, fuel evaporation, combustion sources, oil refining process, and asphalt contributed 62.6 %, 21.5 %, 10.9 %, 3.8 %, and 1.3 %, respectively to the total VOCs on the annual average. Clear temporal variations differed from one source to another was observed, due to their differences in source emission strength and the influence of meteorological parameters. Potential source contribution function and contribution weighted trajectory models based on backward trajectories indicated that five identified sources had similar geographic origins. Raster analysis based on CWT analysis indicated that the local emissions contributed 48.4 %–74.6 % to the VOCs. This research filled the gaps in understanding the VOCs in the oil-gas field region, where exhibited different source emission behaviors compared with the urban/industrial regions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-19
    Description: Black carbon (BC), from the incomplete combustion sources (mainly fossil fuel, biofuel and open biomass burning), is chemically inertness and optical absorbance in the atmosphere. It has significant impacts on global climate, regional air quality, and human health. During the transportation, its physical-chemical characteristics, optical properties and sources would change dramatically. To investigate the BC properties (i.e., mass concentration, sources and optical properties) during the intra-regional transport between the south edge of North China Plain (SE-NCP) and Central China (CC), simultaneous observations of BC at a megacity (Wuhan, WH) in CC, three borderline cities (Xiangyang, XY, Suixian, SX and Hong'an, HA, distributing from the west to east) between SE-NCP and CC and a city (Luohe, LH) in SE-NCP were conducted during the typical winter haze episodes. Using Aethalometer, the highest equivalent BC (eBC) mass concentrations and aerosol absorption coefficients (σabs) were found in the city (LH) at SE-NCP, followed by the borderline cities (XY, SX and HA) and megacity (WH). The levels, sources, optical properties (i.e., σabs and absorption Ångström exponent, AAE) and geographic origins of eBC were different between clean and pollution episodes. Compared to clean days, the higher eBC levels (increased by 26.4–163 %) and σabs (increased by 18.2–236 %) were found during pollution episodes due to more combustion of fossil fuel (contributing for 51.1–277 %), supported by the decreased AAE (by 7.40–12.7 %). Non-parametric wind regression (NWR) and concentration-weighted trajectory (CWT) results showed that the geographic origins of biomass burning (BCbb) and fossil fuel (BCff) combustion derived BC were different. Based on cluster analysis of trajectories, air parcels from south direction dominated for border sites during clean days, with contributions of 46.0–58.2 %, while trajectories from the northeast had higher contributions (37.5–51.2 %) during pollution episodes. At the SE-NCP site (LH), transboundary influences from south direction (CC) exhibited more frequent impact (with the air parcels from this direction contributed 47.8 % of all the parcels) on the ambient eBC levels during pollution episodes. At WH, eBC was mainly from the northeast transport route during the whole observation period. Two transportation cases showed that from upwind to downwind direction, the mass concentrations of eBC, BCbb and BCff all increased, while AAE decreased. This study highlighted that intra-regional prevention and control for dominated sources of specific sites should be considered to improve the regional air quality.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...