ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (11)
Collection
Years
  • 1
    Publication Date: 2013-05-29
    Description: Past characterizations of the land–ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATs). Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air–water interface combining global and regional average emission rates derived from local studies.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-04
    Description: The complex coastline of the Earth is over 400 000 km long and about 40% of the world's population lives within 100 km of the sea. Past characterizations of the global coastline were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCAT: Coastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LME: Large Marine Ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles which retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATS). Geographic and hydrologic parameters such as the surface area, volume and fresh water residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. These results can be used for regional analyses and combined with various typologies for upscaling and biogeochemical budgets. In addition, the three levels segmentation can be used for application in Earth System analysis.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-01
    Description: This study applies the Carbon-Generic Estuary Model (C-GEM) modeling platform to simulate the estuarine biogeochemical dynamics – in particular the air-water CO2 exchange – in three idealized end-member systems covering the main features of tidal alluvial estuaries. C-GEM uses a generic biogeochemical reaction network and a unique set of model parameters extracted from a comprehensive literature survey to perform steady-state simulations representing average conditions for temperate estuaries worldwide. Climate and boundary conditions are extracted from published global databases (e.g. World Ocean Atlas, GLORICH) and catchment model outputs (GlobalNEWS2). The whole-system biogeochemical indicators Net Ecosystem Metabolism (NEM), C and N filtering capacities (FCTC and FCTN, respectively) and CO2 gas exchanges (FCO2) are calculated across the three end-member systems and are related to their main hydrodynamic and transport characteristics. A sensitivity analysis, which propagates the parameter uncertainties, is also carried out, followed by projections of changes in the biogeochemical indicators for the year 2050. Results show that the average C filtering capacities for baseline conditions are 40, 30 and 22% for the marine, mixed and riverine estuary, respectively. This translates into a first-order, global CO2 outgassing flux for tidal estuaries between 0.04 and 0.07 Pg C yr−1. N filtering capacities, calculated in similar fashion, range from 22% for the marine estuary to 18 and 15% for the mixed and the riverine estuary, respectively. Sensitivity analysis performed by varying the rate constants for aerobic degradation, denitrification and nitrification over the range of values reported in the literature significantly widens these ranges for both C and N. Simulations for the year 2050 indicate that all end-member estuaries will remain net heterotrophic and while the riverine and mixed systems will only marginally be affected by river load changes and increase in atmospheric pCO2, the marine estuary is likely to become a significant CO2 sink in its downstream section. In the decades to come, such change of behavior might strengthen the overall CO2 sink of the estuary-coastal ocean continuum.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-01-27
    Description: Silica, SiO2, in dissolved (DSi) and particulate (PSi) form, is both a major product of continental weathering as well as an essential nutrient in terrestrial and aquatic systems. Here we present estimates of the spatial distribution of riverine silica fluxes under natural conditions, i.e. without human influence, to ~140 segments of the global coastal zone. Focussing on the construction of the DSi budget, natural DSi concentration is multiplied with discharge of rivers for each segment for documented basins and segments. Segments with no documentation available are estimated using clustered information based mainly on considerations of local lithology, climate, and lake retention. We approximate fluxes of particulate silica in various forms (PSi) from fluxes of suspended matter, calculated from existing models. Results have been established for silica fluxes, concentrations and yields for drainage basins of the different continents, oceans basins as well as coastal segment basins. For the continental surfaces actually draining into the oceans (exorheic regions, representing 114.7 M km2), 371 M t y−1 of DSi and 8835 M t y−1 of PSi are transported, corresponding to a mean concentration of 9.5 mg l−1 and 226 mg l−1, and to a mean yield of 3.3 t km−2 y−1 and 77 t km−2 y−1, respectively. DSi yields exceeding 6.6 t km−2 y−1, i.e. 〉2× the global average, represent 17.4% of the global continental ice-free exorheic area but correspond to 56.0% of DSi fluxes. Pacific catchments hold most of the hyper-active areas (〉5× global average), suggesting a close connection between tectonic activity and DSi fluxes resulting from silicate weathering. The macro-filters of regional and marginal seas intercept 33% and 46% of the total dissolved and particulate silica fluxes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-06
    Description: This regional study quantifies the CO2 exchange at the air–water interface along the land-ocean aquatic continuum (LOAC) of the North East American coast, from streams to the shelf break. Our analysis explicitly accounts for spatial and seasonal variability in the CO2 fluxes. The yearly integrated budget reveals the gradual change in the intensity of the CO2 exchange at the air–water interface, from a strong source towards the atmosphere in streams and rivers (3.0 ± 0.5 Tg C yr−1) and estuaries (0.8 ± 0.5 Tg C yr−1) to a net sink in continental shelf waters (−1.7 ± 0.3 Tg C yr−1). Significant differences in flux intensity and their seasonal response to climate variations is observed between the North and South sections of the study area, both in rivers and coastal waters. Ice cover, snow melt and estuarine surface area are identified as important control factors of the observed spatio-temporal variability in CO2 exchange along the LOAC.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-02-02
    Description: The availability of dissolved silica (Si) in the ocean provides a major control on the growth of siliceous phytoplankton. Diatoms in particular account for a large proportion of oceanic primary production. The original source of the silica is rock weathering, followed by transport of dissolved and biogenic silica to the coastal zone. This model study aims at assessing the sensitivity of the global marine silicon cycle to variations in the river input of silica on timescales ranging from several centuries to millennia. We compare the performance of a box model for the marine silicon cycle to that of a global biogeochemical ocean general circulation model (HAMOCC2 and 5). Results indicate that the average global ocean response to changes in river input of silica is comparable in the models on time scales up to 150 kyrs. While the trends in export production and opal burial are the same, the box model shows a delayed response to the imposed perturbations compared to the general circulation model. Results of both models confirm the important role of the continental margins as a sink for silica at the global scale. Our work also demonstrates that the effects of changes in riverine dissolved silica on ocean biogeochemistry depend on the availability of the other nutrients such as nitrogen, phosphorus and iron. The model results suggest that the effects of reduced silica inputs due to river damming are particularly pronounced in the Gulf of Bengal, Gulf of Mexico and the Amazon plume where they negatively affect opal production. While general circulation models are indispensable when assessing the spatial variation in opal export production and biogenic Si burial in the ocean, this study demonstrates that box models provide a good alternative when studying the average global ocean response to perturbations of the oceanic silica cycle (especially on longer time scales).
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-05
    Description: This regional study quantifies the CO2 exchange at the air–water interface along the land–ocean aquatic continuum (LOAC) of the northeast North American coast, from streams to the shelf break. Our analysis explicitly accounts for spatial and seasonal variability in the CO2 fluxes. The yearly integrated budget reveals the gradual change in the intensity of the CO2 exchange at the air–water interface, from a strong source towards the atmosphere in streams and rivers (3.0 ± 0.5 TgC yr−1) and estuaries (0.8 ± 0.5 TgC yr−1) to a net sink in continental shelf waters (−1.7 ± 0.3 TgC yr−1). Significant differences in flux intensity and their seasonal response to climate variations is observed between the North and South sections of the study area, both in rivers and coastal waters. Ice cover, snowmelt, and intensity of the carbon removal efficiency through the estuarine filter are identified as important control factors of the observed spatiotemporal variability in CO2 exchange along the LOAC.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-04-23
    Description: The availability of dissolved silica in the ocean provides a major control on the growth of siliceous phytoplankton. Diatoms in particular account for a large proportion of oceanic primary production. The original source of the silica is rock weathering, followed by transport of dissolved and biogenic silica to the coastal zone. This model study aims at assessing the sensitivity of the global marine silicon cycle to variations in the river input of silica and other nutrients on timescales ranging from several centuries to millennia. We compare the performance of a box model for the marine Si cycle to that of a global biogeochemical ocean general circulation model (HAMOCC2 and 5). Results indicate that the average global ocean response to changes in river input of Si is surprisingly similar in the models on time scales up to 150 kyrs. While the trends in export production and opal burial are the same, the box model shows a delayed response to the imposed perturbations compared to the general circulation model. Results of both models confirm the important role of the continental margins as a sink for silica at the global scale. While general circulation models are indispensable when assessing the spatial variation in opal export production and biogenic Si burial in the ocean, this study demonstrates that box models provide a good alternative when studying the average global ocean response to perturbations of the oceanic silica cycle (especially on longer time scales).
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-03-07
    Description: Silica, SiO2, in dissolved (DSi) and particulate (PSi) form, is both a major product of continental weathering as well as an essential nutrient in terrestrial and aquatic systems. Here we present estimates of the spatial distribution of riverine silica fluxes under natural conditions, i.e. without human influence, to ~140 segments of the global coastal zone. Focussing on the construction of the DSi budget, natural DSi concentration is multiplied with discharge of rivers for each segment for documented basins and segments. Segments with no documentation available are estimated using clustered information based mainly on considerations of local lithology, climate, and lake retention. We approximate fluxes of particulate silica in various forms (PSi) from fluxes of suspended matter, calculated from existing models. Results have been established for silica fluxes, concentrations and yields for drainage basins of the different continents, oceans basins as well as coastal segment basins. For the continental surfaces actually draining into the oceans (exorheic regions, representing 114.7 million (M) km2), 371 M t y−1 of DSi and 8835 M t y−1 of PSi are transported, corresponding to a mean concentration of 9.5 mg l−1 and 226 mg l−1, and to a mean yield of 3.3 t km−2 y−1 and 77 t km−2 y−1, respectively. DSi yields exceeding 6.6 t km−2 y−1, i.e. 〉2× the global average, represent 17.4% of the global continental ice-free exorheic area but correspond to 56.0% of DSi fluxes. Pacific catchments hold most of the hyper-active areas (〉5× global average), suggesting a close connection between tectonic activity and DSi fluxes resulting from silicate weathering. The macro-filters of regional and marginal seas intercept 33% and 46% of the total dissolved and particulate silica fluxes. The mass of DSi received from rivers per unit square area of various oceans ranges over more than one order of magnitude. When expressed per unit volume and when individual regional seas are considered this figure ranges over two to three orders of magnitude, an illustration of the heterogeneity of the land to sea connection.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-14
    Description: The first part of this paper describes C-GEM (Carbon – Generic Estuary Model), a new, one-dimensional, generic reactive-transport model for the biogeochemical dynamics of carbon and associated bio-elements (N, P, Si) in estuaries. C-GEM is computationally efficient and reduces data-requirements by using an idealized representation of the estuarine geometry to quantitatively predict the dominant features of the estuarine hydrodynamics, salt transport and biogeochemistry. A protocol for the set-up of C-GEM for an estuarine system is also described. The second part of this paper presents, as a proof of concept, the application of C-GEM to the funnel-shaped Scheldt estuary (Belgium, the Netherlands), one of the best-surveyed system in the world. Steady-state and transient simulations are performed and the performance of C-GEM is evaluated through model-data and model-model comparison, using integrated measures of the estuarine biogeochemical functioning, such as system-wide estimates of the Net Ecosystem Metabolism (NEM). A sensitivity analysis is also carried out to identify model parameters that exert the most important control on biogeochemical processes and to assess the sensitivity of the NEM to uncertainties in parameter values. The paper ends by a short discussion of current model limitations with respect to local, regional and global scale applications.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...