ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-28
    Description: Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigeneous matter into Arctic coastal waters. We used optical operational satellite data from the Ocean Colour sensor MERIS onboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigeneous matter in the southern Laptev Sea. MERIS satellite data from 2006 on to 2011 were processed using the Case2Regional Processor, C2R, installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using Ocean Colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS parameters with surface water sampling data from the Russian-German ship expeditions LENA2010 and TRANSDRIFT-XVII taking place in August and September 2010 in the southern Laptev Sea. The surface waters of the southern Laptev Sea are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of Suspended Particulate Matter, SPM, and coloured Dissolved Organic Matter, cDOM. The mapped calculated optical water parameters, such as the first attenuation depth, Z90, the attenuation coefficient, k, and Suspended Particulate Matter, SPM, visualize resuspension events that occur in shallow coastal and shelf waters indicating vertical mixing events. The mapped optical water parameters also visualize that the hydrography of the Laptev Sea is dominated by frontal meanders with amplitudes up to 30 km and eddies and filaments with diameters up to 100 km that prevail throughout the ice-free season. The meander crests, filaments and eddy-like structures that become visible through the mapped MERIS C2R parameters indicate enhanced vertical and horizontal transport energy for the transport of terrigenous and living biological matter in the surface waters during the ice-free season.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-11
    Description: The Lena Delta in Northern Siberia is one of the largest river deltas in the world. During peak discharge, after the ice melt in spring, it delivers between 60–8000 m3s−1 of water and sediment into the Arctic Ocean. The Lena Delta and the Laptev Sea coast also constitute a~continuous permafrost region. Ongoing climate change, which is particularly pronounced in the Arctic, is leading to increased rates of permafrost thaw. This is likely to profoundly change the discharge rates of the Lena River and the chemistry of the river waters which are discharged into the coastal Laptev Sea, e.g. by increasing concentrations of inorganic nutrients, DOC and importantly methane. These physical and chemical changes will also affect the composition of and interactions between phytoplankton and zooplankton communities, forming the basis of the food web. However, before potential consequences of climate change for coastal arctic plankton communities can be judged, the inherent status of the diversity and linked foodweb interactions within the delta need to be established. As part of the AWI Lena Delta Programme in 2010 the phyto- and microzooplankton community in three river channels as well as four coastal transects were investigated to capture the typical river phytoplankton communities and the transitional zone of brackish/marine conditions. Most CTD profiles from 23 coastal stations showed very strong stratification. The only exception to this was a small a shallow and mixed area running from the outflow of Bykovskaya channel in a northerly direction parallel to the shore (transect 3). Of the five stations in this area three had a salinity of close to zero. Two further stations had salinities of around 2 and 5 throughout the water column. In the remaining transects on the other hand salinities varied between 5–30 with depth. Phytoplankton counts from the outflow from the Lena were dominated by diatoms (Aulacoseira species) cyanobacteria (Aphanizomenon, Pseudanabaena) and chlorophytes, in those stations characterized by river outflow (stations in the Lena itself and in coastal transect 3). In contrast in the stratified stations the plankton was mostly dominated by dinoflagellates, ciliates and nanoflagellates, with only an insignificant diatom component from the genera Chaetoceros and Thalassiosira (brackish as opposed to freshwater species). Ciliate abundance was significantly coupled with the abundance of total flagellates. A pronounced partitioning in the phytoplankton community was also discernible with depth, with a different community composition and abundance above and below the thermocline in the stratified sites. This work represents the first attempt at analyzing the phytoplankton structure of the region of freshwater influence at confluence Lena–Laptev sea.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-13
    Description: The Lena Delta in Northern Siberia is one of the largest river deltas in the world. During peak discharge, after the ice melt in spring, it delivers between 60–8000 m3 s−1 of water and sediment into the Arctic Ocean. The Lena Delta and the Laptev Sea coast also constitute a continuous permafrost region. Ongoing climate change, which is particularly pronounced in the Arctic, is leading to increased rates of permafrost thaw. This has already profoundly altered the discharge rates of the Lena River. But the chemistry of the river waters which are discharged into the coastal Laptev Sea have also been hypothesized to undergo considerable compositional changes, e.g. by increasing concentrations of inorganic nutrients such as dissolved organic carbon (DOC) and methane. These physical and chemical changes will also affect the composition of the phytoplankton communities. However, before potential consequences of climate change for coastal arctic phytoplankton communities can be judged, the inherent status of the diversity and food web interactions within the delta have to be established. In 2010, as part of the AWI Lena Delta programme, the phyto- and microzooplankton community in three river channels of the delta (Trofimov, Bykov and Olenek) as well as four coastal transects were investigated to capture the typical river phytoplankton communities and the transitional zone of brackish/marine conditions. Most CTD profiles from 23 coastal stations showed very strong stratification. The only exception to this was a small, shallow and mixed area running from the outflow of Bykov channel in a northerly direction parallel to the shore. Of the five stations in this area, three had a salinity of close to zero. Two further stations had salinities of around 2 and 5 throughout the water column. In the remaining transects, on the other hand, salinities varied between 5 and 30 with depth. Phytoplankton counts from the outflow from the Lena were dominated by diatoms (Aulacoseira species) cyanobacteria (Aphanizomenon, Pseudanabaena) and chlorophytes. In contrast, in the stratified stations the plankton was mostly dominated by dinoflagellates, ciliates and nanoflagellates, with only an insignificant diatom component from the genera Chaetoceros and Thalassiosira (brackish as opposed to freshwater species). Ciliate abundance was significantly coupled with the abundance of total flagellates. A pronounced partitioning in the phytoplankton community was also discernible with depth, with a different community composition and abundance above and below the thermocline in the stratified sites. This work is a first analysis of the phytoplankton community structure in the region where Lena River discharge enters the Laptev Sea.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-12
    Description: Enhanced permafrost warming and increased Arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. We used optical operational satellite data from the ocean colour sensor MERIS (Medium-Resolution Imaging Spectrometer) aboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigenous matter on the shallow Laptev Sea shelf. Despite the high cloud coverage in summer that is inherent to this Arctic region, time series from MERIS satellite data from 2006 on to 2011 could be acquired and were processed using the Case-2 Regional Processor (C2R) for optically complex surface waters installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using ocean colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS C2R parameters with surface water sampling data from the Russian–German ship expeditions LENA2008, LENA2010 and TRANSDRIFT-XVII taking place in August 2008 and August and September 2010 in the southern Laptev Sea. The shallow Siberian shelf waters are optically not comparable to the deeper, more transparent waters of the Arctic Ocean. The inner-shelf waters are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of suspended particulate matter and coloured dissolved organic matter. We compared the field-based measurements with the satellite data that are closest in time. The match-up analyses related to LENA2008 and LENA2010 expedition data show the technical limits of matching in optically highly heterogeneous and dynamic shallow inner-shelf waters. The match-up analyses using the data from the marine TRANSDRIFT expedition were constrained by several days' difference between a match-up pair of satellite-derived and in situ parameters but are also based on the more stable hydrodynamic conditions of the deeper inner- and the outer-shelf waters. The relationship of satellite-derived turbidity-related parameters versus in situ suspended matter from TRANSDRIFT data shows that the backscattering coefficient C2R_bb_spm can be used to derive a Laptev-Sea-adapted SPM algorithm. Satellite-derived Chl a estimates are highly overestimated by a minimum factor of 10 if applied to the inner-shelf region due to elevated concentrations of terrestrial organic matter. To evaluate the applicability of ocean colour remote sensing, we include the visual analysis of lateral hydrographical features. The mapped turbidity-related MERIS C2R parameters show that the Laptev Sea is dominated by resuspension above submarine shallow banks and by frontal instabilities such as frontal meanders with amplitudes up to 30 km and eddies and filaments with horizontal scales up to 100 km that prevail throughout the sea-ice-free season. The widespread turbidity above submarine shallow banks indicates inner-shelf vertical mixing that seems frequently to reach down to submarine depths of a minimum of 10 m. The resuspension events and the frontal meanders, filaments and eddies indicate enhanced vertical mixing being widespread on the inner shelf. It is a new finding for the Laptev Sea that numerous frontal instabilities are made visible, and how highly time-dependent and turbulent the Laptev Sea shelf is. The meanders, filaments and eddies revealed by the ocean colour parameters indicate the lateral transportation pathways of terrestrial and living biological material in surface waters.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-16
    Description: The Lena Delta in Northern Siberia is one of the largest river deltas in the world. During peak discharge, after the ice melt in spring, it delivers between 60–8000 m3 s−1 of water and sediment into the Arctic Ocean. The Lena Delta and the Laptev Sea coast also constitute a continuous permafrost region. Ongoing climate change, which is particularly pronounced in the Arctic, is leading to increased rates of permafrost thaw. This has already profoundly altered the discharge rates of the Lena River. But the chemistry of the river waters which are discharged into the coastal Laptev Sea have also been hypothesized to undergo considerable compositional changes, e.g. by increasing concentrations of inorganic nutrients such as dissolved organic carbon (DOC) and methane. These physical and chemical changes will also affect the composition of the phytoplankton communities. However, before potential consequences of climate change for coastal arctic phytoplankton communities can be judged, the inherent status of the diversity and food web interactions within the delta have to be established. In 2010, as part of the AWI Lena Delta programme, the phyto- and microzooplankton community in three river channels of the delta (Trofimov, Bykov and Olenek) as well as four coastal transects were investigated to capture the typical river phytoplankton communities and the transitional zone of brackish/marine conditions. Most CTD profiles from 23 coastal stations showed very strong stratification. The only exception to this was a small, shallow and mixed area running from the outflow of Bykov channel in a northerly direction parallel to the shore. Of the five stations in this area, three had a salinity of close to zero. Two further stations had salinities of around 2 and 5 throughout the water column. In the remaining transects, on the other hand, salinities varied between 5 and 30 with depth. Phytoplankton counts from the outflow from the Lena were dominated by diatoms (Aulacoseira species) cyanobacteria (Aphanizomenon, Pseudanabaena) and chlorophytes. In contrast, in the stratified stations the plankton was mostly dominated by dinoflagellates, ciliates and nanoflagellates, with only an insignificant diatom component from the genera Chaetoceros and Thalassiosira (brackish as opposed to freshwater species). Ciliate abundance was significantly coupled with the abundance of total flagellates. A pronounced partitioning in the phytoplankton community was also discernible with depth, with a different community composition and abundance above and below the thermocline in the stratified sites. This work is a first analysis of the phytoplankton community structure in the region where Lena River discharge enters the Laptev Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...