ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (8)
Collection
Publisher
Years
  • 1
    Publication Date: 2017-01-18
    Description: In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in the photosynthetic rate and leaf area of different species. Photosynthetic properties (light response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance (EC) measurements.Species areal cover, rather than differences in photosynthetic properties, determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which, in turn, determined the seasonal variation in ecosystem PG. The upscaled growing season PG estimate, 230 g C m−2, agreed well with the GPP estimated by the EC (243 g C m−2).Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species, together with their differences in photosynthetic parameters, shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity, i.e., the presence of plant groups with different seasonal timing and efficiency of photosynthesis, may increase the stability of C sinks of boreal bogs.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-01
    Description: We measured methane fluxes of a patterned bog from six different plant community types in three growing seasons 2012–2014 using the static chamber method. A mixed effects model was applied for quantifying the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Excluding the highest 2.5 % of all fluxes, methane emissions ranged from −309 to 556 mg m−2 d−1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception were higher fluxes from hummocks than from other plant community types in 2013. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods, in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and on all community types. Exceptionally high methane emissions up to 17 000 mg m−2 d−1 were measured sporadically in 2013 and 2014. These extreme emissions not detected in EC measurements we were not able to exclude as measurement errors and they did not correlate with any measured variables. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate need for automatized chambers to reliably capture localized events to support more robust EC method.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-13
    Description: In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in photosynthetic rate and leaf area of different species. Photosynthetic properties (light-response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance measurements (EC). Species areal cover rather than differences in photosynthetic properties determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which in turn determined the seasonal variation in ecosystem PG. The upscaled growing-season PG estimate, 230 g C m−2, agreed well with the GPP estimated by the EC, 243 g C m−2. Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species together with their differences in photosynthetic parameters shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity may increase the stability of C sink of boreal bogs.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-14
    Description: We measured methane ebullition from a patterned boreal bog situated in the Siikaneva wetland complex in southern Finland. Measurements were conducted on water (W) and bare peat surfaces (BP) in three growing seasons 2014–2016 using floating gas traps. The volume of the trapped gas was measured weekly, and methane and carbon dioxide (CO2) concentrations of bubbles were analyzed from fresh bubble samples collected separately. We applied a mixed effects model to quantify the effect of the environmental controlling factors on the ebullition. Ebullition was higher from W than from BP, and more bubbles were released from open water (OW) than from water's edge (EW). On average, ebullition rate was the highest in the wettest year 2016 and ranged between 0–253 mg m−2 d−1, 0–147 mg m−2 d−1 and 0–186 mg m−2 d−1 in 2014, 2015 and 2016, respectively. Ebullition increased together with increasing peat temperature, weekly air temperature sum and atmospheric pressure, and decreasing water table (WT). Methane concentration in the bubbles released from W was 15–20 times higher and from BP 10 times higher than their CO2 concentration. The proportion of ebullition fluxes upscaled to ecosystem level for the peak season was 2–8 % and 2–5 % of the total flux measured with eddy covariance technique and with chambers and gas traps, respectively. Thus, the contribution of methane ebullition from wet non-vegetated surfaces of the bog to the total ecosystem-scale methane emission appeared to be small.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-14
    Description: We measured methane ebullition from a patterned boreal bog situated in the Siikaneva wetland complex in southern Finland. Measurements were conducted on water (W) and bare peat surfaces (BP) in three growing seasons (2014–2016) using floating gas traps. The volume of the trapped gas was measured weekly, and methane and carbon dioxide (CO2) concentrations of bubbles were analysed from fresh bubble samples that were collected separately. We applied a mixed-effect model to quantify the effect of the environmental controlling factors on the ebullition. Ebullition was higher from W than from BP, and more bubbles were released from open water (OW) than from the water's edge (EW). On average, ebullition rate was the highest in the wettest year (2016) and ranged between 0 and 253 mg m−2 d−1 with a median of 2 mg m−2 d−1, 0 and 147 mg m−2 d−1 with a median of 3 mg m−2 d−1, and 0 and 186 mg m−2 d−1 with a median of 28 mg m−2 d−1 in 2014, 2015, and 2016, respectively. Ebullition increased together with increasing peat temperature, weekly air temperature sum and atmospheric pressure, and decreasing water table (WT). Methane concentration in the bubbles released from W was 15–20 times higher than the CO2 concentration, and from BP it was 10 times higher. The proportion of ebullition fluxes upscaled to ecosystem level for the peak season was 2 %–8 % and 2 %–5 % of the total flux measured with eddy covariance technique and with chambers and gas traps, respectively. Thus, the contribution of methane ebullition from wet non-vegetated surfaces of the bog to the total ecosystem-scale methane emission appeared to be small.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-26
    Description: We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012–2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Methane emissions ranged from −309 to 1254 mg m−2 d−1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: Vegetation and hydrology are important controlling factors in peatland methane dynamics. This study aimed at investigating the role of vegetation components, sedges, dwarf shrubs, and Sphagnum mosses, in methane fluxes of a boreal fen under natural and experimental water level drawdown conditions. We measured the fluxes during growing seasons 2001–2004 using the static chamber technique in a field experiment where the role of the ecosystem components was assessed via plant removal treatments. The first year was a calibration year after which the water level drawdown and vegetation removal treatments were applied. Under natural water level conditions, plant-mediated fluxes comprised 68 %–78 % of the mean growing season flux (1.73±0.17 g CH4 m−2 month−1 from June to September), of which Sphagnum mosses and sedges accounted for one-fourth and three-fourths, respectively. The presence of dwarf shrubs, on the other hand, had a slightly attenuating effect on the fluxes. In water level drawdown conditions, the mean flux was close to zero (0.03±0.03 g CH4 m−2 month−1) and the presence and absence of the plant groups had a negligible effect. In conclusion, water level acted as a switch; only in natural water level conditions did vegetation regulate the net fluxes. The results are relevant for assessing the response of fen peatland fluxes to changing climatic conditions, as water level drawdown and the consequent vegetation succession are the major projected impacts of climate change on northern peatlands.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-10
    Description: Northern peatlands are projected to be crucial in future atmospheric methane (CH4) budgets and have a positive feedback on global warming. Fens receive nutrients from catchments via inflowing water and are more sensitive than bogs to variations in their ecohydrology. Yet, due to a lack of data detailing the impacts of moving water on microhabitats and CH4 fluxes in fens, large uncertainties remain with respect to predicting CH4 emissions from these sites under climate changes. We measured CH4 fluxes with manual chambers over three growing seasons (2017–2019) at a northern boreal fen. To address the spatial variation at the site where a stream flows through the long and narrow valley fen, we established sample plots at varying distances from the stream. To link the variations in CH4 emissions to environmental controls, we quantified water levels, peat temperature, dissolved oxygen concentration, vegetation composition, and leaf area index in combination with flux measurements during the growing season in 2019. We found that due to the flowing water, there was a higher water level, cooler peat temperatures, and more oxygen in the peat close to the stream, which also had the highest total leaf area and gross primary production (GPP) values but the lowest CH4 emissions. CH4 emissions were highest at an intermediate distance from the stream where the oxygen concentration in the surface peat was low but GPP was still high. Further from the stream, the conditions were drier and produced low CH4 emissions. Our results emphasize the key role of ecohydrology in CH4 dynamics in fens and, for the first time, show how a stream controls CH4 emissions in a flow-through fen. As valley fens are common peatland ecosystems from the Arctic to the temperate zones, future projections of global CH4 budgets need to take flowing water features into account.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...