ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-02-05
    Description: The satellite derived HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data) and ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis data sets have been validated against in-situ precipitation measurements from ship rain gauges and optical disdrometers over the open-ocean by applying a statistical analysis for binary forecasts. For this purpose collocated pairs of data were merged within a certain temporal and spatial threshold into single events, according to the satellites' overpass, the observation and the forecast times. HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially in the tropics and subtropics. Although precipitation rates are difficult to compare because along-track point measurements are collocated with areal estimates and the numbers of available data are limited, we find that HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide average precipitation rate is close to measurements. However, regionally averaged over latitudinal belts, there are deviations between the observed mean precipitation rates and ERA-Interim. The most obvious ERA-Interim feature is an overestimation of precipitation in the area of the intertropical convergence zone and the southern sub-tropics over the Atlantic Ocean. For a limited number of snow measurements by optical disdrometers it can be concluded that both HOAPS and ERA-Interim are suitable to detect the occurrence of solid precipitation.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-31
    Description: Latent heat fluxes (LHF) are one of the main contributors to the global energy budget. As the density of LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications is enormous. However, to date none of the available satellite products include estimates of systematic, random retrieval, and sampling uncertainties, all of which are essential for assessing their quality. Here, this challenge is taken on by applying regionally independent multi-dimensional bias analyses to LHF-related parameters (wind speed U, near-surface specific humidity qa, and sea surface saturation specific humidity qs) of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology. In connection with multiple triple collocation analyses, it is demonstrated how both instantaneous (gridded) uncertainty measures may be assigned to each pixel (grid box). A high-quality in situ data archive including buoys and selected ships serves as the ground reference. Results show that systematic LHF uncertainties range between 15–50 W m-2 with a global mean of 25 W m-2. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents. Investigations indicate that contributions by qa (U) to the overall LHF uncertainty are in the order of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically large over the subtropics with a global average of 37 W m-2. In a climatological sense, their magnitudes become negligible, as do respective sampling uncertainties. Time series analyses show footprints of climate events, such as the strong El Niño during 1997/98. Regional and seasonal analyses suggest that largest total (i.e., systematic + instantaneous random) LHF uncertainties are seen over the Gulf Stream and the Indian monsoon region during boreal winter. In light of the uncertainty measures, the observed continuous global mean LHF increase up to 2009 needs to be treated with caution. First intercomparisons to other LHF climatologies (in situ, satellite) reveal overall resemblance with few, yet distinct exceptions.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-01
    Description: The satellite-derived HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) and ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis data sets have been validated against in situ precipitation measurements from ship rain gauges and optical disdrometers over the open ocean by applying a statistical analysis for binary estimates. For this purpose collocated pairs of data were merged within a certain temporal and spatial threshold into single events, according to the satellites' overpass, the observation and the ERA-Interim times. HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially in the tropics and subtropics. Although precipitation rates are difficult to compare because along-track point measurements are collocated with areal estimates and the number of available data are limited, we find that HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide average precipitation rate is close to measurements. However, when regionally averaged over latitudinal belts, deviations between the observed mean precipitation rates and ERA-Interim exist. The most obvious ERA-Interim feature is an overestimation of precipitation in the area of the intertropical convergence zone and the southern subtropics over the Atlantic Ocean. For a limited number of snow measurements by optical disdrometers, it can be concluded that both HOAPS and ERA-Interim are suitable for detecting the occurrence of solid precipitation.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...