ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-24
    Print ISSN: 2195-9242
    Electronic ISSN: 2195-9250
    Topics: Physics
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-06
    Print ISSN: 2195-9242
    Electronic ISSN: 2195-9250
    Topics: Physics
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-07
    Description: The spatial distribution of the source-receptor relationship (SRR) of sulfur over Northeast Asia was examined using a chemical transport model (RAQM) off-line coupled with a meteorological model (MM5). The simulation was conducted for the entire year of 2002. The results were evaluated using monitoring data for six remote stations of the Acid Deposition Monitoring Network in East Asia (EANET). The modeled SO2 and O3 concentrations agreed well with the observations quantitatively. The modeled aerosol and wet deposition fluxes of SO42− were underestimated by 30 % and 50 %, respectively. The domain was divided into 5 source-receptor regions: (I) North China; (II) Central China; (III) South China; (IV) South Korea; and (V) Japan. The sulfur deposition in each receptor region amounted to about 50–75 % of the emissions from the same region. The largest contribution to the deposition in each region was originated from the same region, accounting for 53–84 %. The second largest contribution was due to Region II, supplying 14–43 %. The spatial distributions of the SRRs revealed that subregional values varied by about two times more than regional averages due to nonuniformity across the deposition fields. Examining the spatial distributions of the deposition fields was important for identifying subregional areas where the deposition was highest within a receptor region. The horizontal distribution changed substantially according to season.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-05-25
    Description: Oxygenated organic aerosol (OOA) observed in remote areas is believed to comprise aged secondary organic aerosol (SOA); however, the reaction processes relevant to SOA chemical aging have hitherto been unclear. We recently measured the mass spectra of SOA formed from the photooxidation of aromatic hydrocarbons using an Aerodyne aerosol mass spectrometer (AMS) and reported that SOA aging is slowed with increasing number of alkyl groups in the precursor molecule. In this study, we selected benzene and 1,3,5-trimethylbenzene (TMB) as precursors to analyze SOA formed from the photooxidation of aromatic hydrocarbons in the presence of NOx using high-resolution time-of-flight AMS (H-ToF-AMS) and liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS). A van Krevelen diagram was studied using the O/C and H/C ratios obtained by H-ToF-AMS for organics present in SOA. The results showed these organics to be rich in carboxylic acids or hydroxycarbonyls and the O/C ratio of SOA formed by the reaction of 1,3,5-TMB to be lower than that for benzene. Analytical results from LC/TOF-MS showed the particulate products formed by the reaction of 1,3,5-TMB to be richer in ketocarboxylic acids than for benzene. These results indicate that SOA aging proceeds mainly by formation of carboxylic acids and that the rate of SOA aging in laboratory chambers is limited by the oxidation of ketone groups. SOA formed in laboratory chamber experiments is less oxidized than for ambient OOA, not only because the experimental duration is insufficient or the SOA mass loading in the chamber is higher than that of the atmosphere. The laboratory chamber experiments under dry conditions are not able to simulate ketocarboxylic acid photochemical oxidation in the aqueous phase. The fractions of organic peroxides to the total SOA mass were determined by iodometric spectrophotometry to be 12 ± 8% (1,3,5-TMB) and
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-21
    Description: A quantitative analysis on the relationship between atmospheric waves and polar stratospheric clouds (PSCs) in the 2008 austral winter and the 2007/2008 boreal winter is made using CALIPSO, COSMIC and Aura MLS observation data and reanalysis data. A longitude-time section of the frequency of PSC occurrence in the Southern Hemisphere indicates that PSC frequency is not regionally uniform and that high PSC frequency regions propagate eastward at different speeds from the background zonal wind. These features suggest a significant influence of atmospheric waves on PSC behavior. Next, three temperature thresholds for PSC existence are calculated using HNO3 and H2O mixing ratios. Among the three, the TSTS (a threshold for super cooled ternary solution)-based estimates of PSC frequency accord best with the observations in terms of the amount, spatial and temporal variation, in particular, for the latitude ranges of 55° S–70° S and 55° N–85° N. Moreover, the effects of planetary waves, synoptic-scale waves and gravity waves on PSC areal extent are separately examined using the TSTS-based PSC estimates. The latitude range of 55° S–70° S is analyzed because the TSTS-based estimates are not consistent with observations at higher latitudes (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-07-25
    Description: Secondary organic aerosol (SOA) formation from atmospheric oxidation of isoprene has been the subject of multiple studies in recent years; however, reactions of other conjugated dienes emitted from anthropogenic sources remain poorly understood. SOA formation from the photooxidation of isoprene, isoprene-1-13C, 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene is investigated for high NOx conditions. The SOA yield measured in the 1,3-butadiene/NOx/H2O2 irradiation system (0.089–0.178) was close to or slightly higher than that measured with isoprene under similar NOx conditions (0.077–0.103), suggesting that the photooxidation of 1,3-butadiene is a possible source of SOA in urban air. In contrast, a very small amount of SOA particles was produced in experiments with 2,3-dimethyl-1,3-butadiene. Off-line liquid chromatography – mass spectrometry analysis revealed that the signals of oligoesters comprise a major fraction (0.10–0.33) of the signals of the SOA products observed from all dienes investigated. The oligoesters originate from the unsaturated aldehyde gas phase diene reaction products; namely, semi-volatile compounds produced by the oxidation of the unsaturated aldehyde undergo particle-phase oligoester formation. Oligoesters produced by the dehydration reaction between nitrooxypolyol and 2-methylglyceric acid monomer or its oligomer were also characterized in these experiments with isoprene as the starting diene. These oligomers are possible sources of the 2-methyltetrols found in ambient aerosol samples collected under high NOx conditions. Furthermore, in low-temperature experiments also conducted in this study, the SOA yield measured with isoprene at 278 K was 2–3 times as high as that measured at 300 K under similar concentration conditions. Although oligomerization plays an important role in SOA formation from isoprene photooxidation, the observed temperature dependence of SOA yield is largely explained by gas/particle partitioning of semi-volatile compounds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-17
    Description: A new aerosol chemical transport model, the Regional Air Quality Model 2 (RAQM2), was developed to simulate the Asian air quality. We implemented a simple version of a triple-moment modal aerosol dynamics model (MADMS) and achieved a completely dynamic (non-equilibrium) solution of a gas-to-particle mass transfer over a wide range of aerosol diameters from 1 nm to super-μm. To consider a variety of atmospheric aerosol properties, a category approach was utilized in which the aerosols were distributed into four categories: particles in the Aitken mode (ATK), soot-free particles in the accumulation mode (ACM), soot aggregates (AGR), and particles in the coarse mode (COR). The aerosol size distribution in each category is characterized by a single mode. The condensation, evaporation, and Brownian coagulations for each mode were solved dynamically. A regional-scale simulation (Δx = 60 km) was performed for the entire year of 2006 covering the Northeast Asian region. The modeled PM1/bulk ratios of the chemical components were consistent with observations, indicating that the simulated aerosol mixing types were consistent with those in nature. The non–sea-salt SO42− mixed with ATK + ACM was the largest at Hedo in summer, whereas the SOSO42− was substantially mixed with AGR in the cold seasons. Ninety-eight percent of the modeled NO3− was mixed with sea salt at Hedo, whereas 53.7% of the NO3− was mixed with sea salt at Gosan, which is located upwind toward the Asian continent. The condensation of HNO3 onto sea salt particles during transport over the ocean accounts for the difference in the NO3− mixing type at the two sites. Because the aerosol mixing type alters the optical properties and cloud condensation nuclei activity, its accurate prediction and evaluation are indispensable for aerosol-cloud-radiation interaction studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-10-27
    Description: SOA formation from benzene, toluene, m-xylene, and their corresponding phenolic compounds were investigated using the UCR/CE-CERT Environmental Chamber to evaluate the importance of phenolic compounds as intermediate species in aromatic SOA formation. SOA formation yield measurements coupled to gas-phase yield measurements indicate that approximately 20% of the SOA of benzene, toluene, and m-xylene could be ascribed to the phenolic route under low NOx conditions. The SOA densities tend to be initially as high as approximately 1.8 g cm−3 and eventually reach the range of 1.3–1.4 g cm−3. The final SOA density was found to be independent of elemental ratio (O/C) indicating that applying constant density (e.g., 1.4 g cm−3) to SOA formed from different aromatic compounds tested in this study is a reasonable approximation. Results from a novel on-line PILS-TOFMS (Particle-into-Liquid Sampler coupled with Agilent Time-of-Flight Mass Spectrometer) are reported. Major signals observed by the on-line/off-line Agilent TOFMS indicated that products had the same number of carbon atoms as their parent aromatics, suggesting importance of ring-retaining products or ring-opening products following ring-cleavage.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-12
    Description: Previous studies have reported that polar stratospheric clouds (PSCs) are frequently observed simultaneously with upper-tropospheric clouds (UCs) in the Southern Hemisphere. However, it has not yet been examined whether the UCs that simultaneously occur with PSCs are actually located below the height of the tropopause, which is modified by tropospheric disturbances. Furthermore, the mechanism of this simultaneous occurrence has not yet been clarified. This study statistically examines the simultaneous appearance of PSCs and UCs using the Cloud-Aerosol Lidar and Pathfinder Satellite Observation (CALIPSO) for the five austral winters of 2007–2011. From correlation analyses and statistical dependence tests, it is shown that the simultaneous occurrence frequencies of clouds with an altitude range of 15–25 km and 9–11 km are significant. The analyses based on tropopause-relative altitude suggest that the occurrence frequency of clouds at altitudes higher than 6 km above the local tropopause (i.e., PSCs) is significantly correlated with that of clouds around and slightly above the tropopause. These results indicate that the UCs observed simultaneously with PSCs reported in previous case studies are likely located around and slightly above the tropopause rather than in the troposphere. It is also shown that the simultaneous occurrence of PSCs and UCs is frequently associated with blocking highs that have large horizontal scales (several thousand kilometers) and tall structure (up to a height of ~15 km). The longitudinal variation of blocking high frequency accords well with that of the simultaneous occurrence frequency of PSCs and UCs. This fact suggests that the blocking highs provide a preferable condition for such simultaneous occurrences. Moreover, the composition of PSCs is investigated as a function of relative longitude of the anticyclones including blocking highs. It was discovered that relatively high proportions of STS (super-cooled ternary solutions), Ice, and Mix2 (mixture of nitric acid trihydrate and STS) types are distributed towards the windward, near, and leeward side of anticyclones in westerly background flows, respectively.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-02-07
    Description: Secondary organic aerosol (SOA) formation from atmospheric oxidation of isoprene has been the subject of multiple studies in recent years; however, reactions of other conjugated dienes emitted from anthropogenic sources remain poorly understood. SOA formation from the photooxidation of isoprene, isoprene-1-13C, 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene is investigated for high NOx conditions. The SOA yield measured in the 1,3-butadiene/NOx/H2O2 irradiation system (0.089–0.178) was close to or slightly higher than that measured with isoprene under similar NOx conditions (0.077–0.103), suggesting that the photooxidation of 1,3-butadiene is a possible source of SOA in urban air. In contrast, a very small amount of SOA particles was produced in experiments with 2,3-dimethyl-1,3-butadiene. Off-line liquid chromatography – mass spectrometry analysis revealed oligoesters as the major SOA products observed from all dienes investigated. The oligoesters originate from the unsaturated aldehyde gas-phase diene reaction products, which undergo oligoester formation through heterogeneous oxidation under high NOx conditions. Oligoesters produced by the dehydration reaction between nitrooxypolyol and 2-methylglyceric acid monomer or its oligomer were also discovered in these experiments with isoprene as the starting diene. These oligomers are possible sources of the 2-methyltetrols found in ambient aerosol samples collected under high NOx conditions. Furthermore, in low-temperature experiments also conducted in this study, the SOA yield measured with isoprene at 278 K was 2–3 times as high as that measured at 300 K under similar concentration conditions. Although oligomerization plays an important role in SOA formation from isoprene photooxidation, the observed temperature dependence of SOA yield is largely explained by gas/particle partitioning of semi-volatile compounds.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...