ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-03-24
    Description: An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite, during the Mexico City Metropolitan Area field study (MCMA-2003) from 31 March-4 May 2003 to investigate particle concentrations, sources, and processes. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1) with high time and size-resolution. In order to account for the refractory material in the aerosol, we also present estimates of Black Carbon (BC) using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE) analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a PM2.5 Tapered Element Oscillating Microbalance (TEOM), and a PM2.5 DustTrak Aerosol Monitor) show that the AMS + BC + soil mass concentration is consistent with the total PM2.5 mass concentration during MCMA-2003 within the combined uncertainties. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents, on average, 54.6% (standard deviation σ=10%) of the mass, with the rest consisting of inorganic compounds (mainly ammonium nitrate and sulfate/ammonium salts), BC, and soil. Inorganic compounds represent 27.5% of PM2.5 (σ=10%); BC mass concentration is about 11% (σ=4%); while soil represents about 6.9% (σ=4%). Size distributions are presented for the AMS species; they show an accumulation mode that contains mainly oxygenated organic and secondary inorganic compounds. The organic size distributions also contain a small organic particle mode that is likely indicative of fresh traffic emissions; small particle modes exist for the inorganic species as well. Evidence suggests that the organic and inorganic species are not always internally mixed, especially in the small modes. The aerosol seems to be neutralized most of the time; however, there were some periods when there was not enough ammonium to completely neutralize the nitrate, chloride and sulfate present. The diurnal cycle and size distributions of nitrate suggest local photochemical production. On the other hand, sulfate appears to be produced on a regional scale. There are indications of new particle formation and growth events when concentrations of SO2 were high. Although the sources of chloride are not clear, this species seems to condense as ammonium chloride early in the morning and to evaporate as the temperature increases and RH decreases. The total and speciated mass concentrations and diurnal cycles measured during MCMA-2003 are similar to measurements during a previous field campaign at a nearby location.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-11-14
    Description: Chemical composition, size, and mixing state of atmospheric particles are critical in determining their effects on the environment. There is growing evidence that soot aerosols play a particularly important role in both climate and human health, but still relatively little is known of their physical and chemical nature. In addition, the atmospheric residence times and removal mechanisms for soot are neither well understood nor adequately represented in regional and global climate models. To investigate the effect of locality and residence time on properties of soot and mixing state in a polluted urban environment, particles of diameter 0.2–2.0 μm were collected in the Mexico City Metropolitan Area (MCMA) during the MCMA-2003 Field Campaign from various sites within the city. Individual particle analysis by different electron microscopy methods coupled with energy dispersed x-ray spectroscopy, and secondary ionization mass spectrometry show that freshly-emitted soot particles become rapidly processed in the MCMA. Whereas fresh particulate emissions from mixed-traffic are almost entirely carbonaceous, consisting of soot aggregates with liquid coatings suggestive of unburned lubricating oil and water, ambient soot particles which have been processed for less than a few hours are heavily internally mixed, primarily with ammonium sulfate. Single particle analysis suggests that this mixing occurs through several mechanisms that require further investigation. In light of previously published results, the internally-mixed nature of processed soot particles is expected to affect heterogeneous chemistry on the soot surface, including interaction with water during wet-removal.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-10-30
    Description: A Markov Chain Monte Carlo model for integrating the observations of inorganic species with a thermodynamic equilibrium model was presented in Part I of this series. Using observations taken at three ground sites, i.e. a residential, industrial and rural site, during the MCMA-2003 campaign in Mexico City, the model is used to analyze the inorganic particle and ammonia data and to predict gas phase concentrations of nitric and hydrochloric acid. In general, the model is able to accurately predict the observed inorganic particle concentrations at all three sites. The agreement between the predicted and observed gas phase ammonia concentration is excellent. The NOz concentration calculated from the NOy, NO and NO2 observations is of limited use in constraining the gas phase nitric acid concentration given the large uncertainties in this measure of nitric acid and additional reactive nitrogen species. Focusing on the acidic period of 9–11 April identified by Salcedo et al. (2006), the model accurately predicts the particle phase observations during this period with the exception of the nitrate predictions after 10:00 a.m. (Central Daylight Time, CDT) on 9 April, where the model underpredicts the observations by, on average, 20%. This period had a low planetary boundary layer, very high particle concentrations, and higher than expected nitrogen dioxide concentrations. For periods when the particle chloride observations are consistently above the detection limit, the model is able to both accurately predict the particle chloride mass concentrations and provide well-constrained HCl (g) concentrations. The availability of gas-phase ammonia observations helps constrain the predicted HCl (g) concentrations. When the particles are aqueous, the most likely concentrations of HCl (g) are in the sub-ppbv range. The most likely predicted concentration of HCl (g) was found to reach concentrations of order 10 ppbv if the particles are dry. Finally, the atmospheric relevance of HCl (g) is discussed in terms of its indicator properties for the possible influence of chlorine-mediated photochemistry in Mexico City.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-10-12
    Description: Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5) were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE), Proton-Elastic Scattering Analysis (PESA) and Scanning Transmission Ion Microscopy (STIM) measurements were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion, V and Ni, correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfates determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-03-26
    Description: Nitrite (NO2–) is a substrate for both oxidative and reductive microbial metabolism. NO2– accumulates at the base of the euphotic zone in oxygenated, stratified open ocean water columns, forming a feature known as the primary nitrite maximum (PNM). Potential pathways of NO2– production include the oxidation of ammonia (NH3) by ammonia-oxidizing bacteria or archaea and assimilatory nitrate (NO3–) reduction by phytoplankton or heterotrophic bacteria. Measurements of NH3 oxidation and NO3– reduction to NO2– were conducted at two stations in the central California Current in the eastern North Pacific to determine the relative contributions of these processes to NO2– production in the PNM. Sensitive (〈 10 nmol L−1), high-resolution measurements of [NH4+] and [NO2–] indicated a persistent NH4+ maximum overlying the PNM at every station, with concentrations as high as 1.5 μmol L−1. Within and just below the PNM, NH3 oxidation was the dominant NO2– producing process with rates of NH3 oxidation of up to 50 nmol L−1 d−1, coinciding with high abundances of ammonia-oxidizing archaea. Though little NO2– production from NO3– was detected, potentially nitrate-reducing phytoplankton (photosynthetic picoeukaryotes, Synechococcus, and Prochlorococcus) were present at the depth of the PNM. Rates of NO2– production from NO3– were highest within the upper mixed layer (4.6 nmol L−1 d−1) but were either below detection limits or 10 times lower than NH3 oxidation rates around the PNM. One-dimensional modeling of water column NO2– profiles supported direct rate measurements of a net biological sink for NO2– just below the PNM. Residence time estimates of NO2– within the PNM were similar at the mesotrophic and oligotrophic stations and ranged from 150–205 d. Our results suggest the PNM is a dynamic, rather than relict, feature with a source term dominated by ammonia oxidation.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-08-01
    Description: Chemical composition, size, and mixing state of atmospheric particles are critical in determining their effects on the environment. There is growing evidence that soot aerosols play a particularly important role in both climate and human health, but still relatively little is known of their physical and chemical nature. In addition, the atmospheric residence times and removal mechanisms for soot are neither well understood nor adequately represented in regional and global climate models. To investigate the effect of locality and residence time on properties of soot and mixing state in a polluted urban environment, particles of diameter 0.2–2.0 µm were collected in the Mexico City Metropolitan Area (MCMA) during the MCMA-2003 field campaign from various sites within the city. Individual particle analysis by different electron microscopy methods coupled with energy dispersed X-ray spectroscopy, and secondary ionization mass spectrometry show that freshly-emitted soot particles become rapidly processed in the MCMA. Whereas fresh particulate emissions from mixed-traffic are almost entirely carbonaceous, consisting of soot aggregates with liquid coatings suggestive of unburned lubricating oil and water, ambient soot particles which have been processed for less than a few hours are heavily internally mixed, primarily with ammonium sulfate. Single particle analysis suggests that this mixing occurs through several mechanisms that require further investigation. In light of previously published results, the internally-mixed nature of processed soot particles is expected to affect heterogeneous chemistry on the soot
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-06-28
    Description: An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite, while another was deployed in the Aerodyne Mobile Laboratory (AML) during the Mexico City Metropolitan Area field study (MCMA-2003) from 31 March–4 May 2003 to investigate particle concentrations, sources, and processes. This is the first of a series of papers reporting the AMS results from this campaign. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1) with high time and size-resolution. For the first time, we report field results from a beam width probe, which was used to study the shape and mixing state of the particles and to quantify potential losses of irregular particles due to beam broadening inside the AMS. Data from this probe show that no significant amount of irregular particles was lost due to excessive beam broadening. A comparison of the CENICA and AML AMSs measurements is presented, being the first published intercomparison between two quadrupole AMSs. The speciation, and mass concentrations reported by the two AMSs compared relatively well. The differences found are likely due to the different inlets used in both instruments. In order to account for the refractory material in the aerosol, we also present measurements of Black Carbon (BC) using an aethalometer and an estimate of the aerosol soil component obtained from Proton-Induced X-ray Emission Spectrometry (PIXE) analysis of impactor substrates. Comparisons of AMS + BC + soil mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a Tapered Element Oscillating Microbalance (TEOM) and a DustTrak Aerosol Monitor) are also presented. The comparisons show that the AMS + BC + soil mass concentration during MCMA-2003 is a good approximation to the total PM2.5 mass concentration.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-11-19
    Description: Nitrite (NO2−) is a substrate for both oxidative and reductive microbial metabolism. NO2− accumulates at the base of the euphotic zone in oxygenated, stratified open-ocean water columns, forming a feature known as the primary nitrite maximum (PNM). Potential pathways of NO2− production include the oxidation of ammonia (NH3) by ammonia-oxidizing bacteria and archaea as well as assimilatory nitrate (NO3−) reduction by phytoplankton and heterotrophic bacteria. Measurements of NH3 oxidation and NO3− reduction to NO2− were conducted at two stations in the central California Current in the eastern North Pacific to determine the relative contributions of these processes to NO2− production in the PNM. Sensitive (〈 10 nmol L−1), precise measurements of [NH4+] and [NO2−] indicated a persistent NH4+ maximum overlying the PNM at every station, with concentrations as high as 1.5 μmol L−1. Within and just below the PNM, NH3 oxidation was the dominant NO2− producing process, with rates of NH3 oxidation to NO2− of up to 31 nmol L−1 d−1, coinciding with high abundances of ammonia-oxidizing archaea. Though little NO2− production from NO3− was detected, potentially nitrate-reducing phytoplankton (photosynthetic picoeukaryotes, Synechococcus, and Prochlorococcus) were present at the depth of the PNM. Rates of NO2− production from NO3− were highest within the upper mixed layer (4.6 nmol L−1 d−1) but were either below detection limits or 10 times lower than NH3 oxidation rates around the PNM. One-dimensional modeling of water column NO2− production agreed with production determined from 15N bottle incubations within the PNM, but a modeled net biological sink for NO2− just below the PNM was not captured in the incubations. Residence time estimates of NO2− within the PNM ranged from 18 to 470 days at the mesotrophic station and was 40 days at the oligotrophic station. Our results suggest the PNM is a dynamic, rather than relict, feature with a source term dominated by ammonia oxidation.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-05-19
    Description: Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5) were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE), Proton-Elastic Scattering Analysis (PESA) and Scanning Transmission Ion Microscopy (STIM) techniques were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion V and Ni correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfate determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-06-28
    Description: An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite during the Mexico City Metropolitan Area field study from 31 March–4 May 2003. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1) with high time and size-resolution. Measurements of Black Carbon (BC) using an aethalometer, and estimated soil concentrations from Proton-Induced X-Ray Emission (PIXE) analysis of impactor substrates are also presented and combined with the AMS in order to include refractory material and estimate the total PM2.5 mass concentration at CENICA during this campaign. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents 54.6% of the mass, with the rest consisting of inorganic compounds (mainly ammonium nitrate and sulfate/ammonium salts), BC, and soil. Inorganic compounds represent 27.5% of PM2.5; BC mass concentration is about 11%; while soil represents about 6.9%. The NR species and BC have diurnal cycles that can be qualitatively interpreted as the interplay of direct emissions, photochemical production in the atmosphere followed by condensation and gas-to-particle partitioning, boundary layer dynamics, and/or advection. Bi- and trimodal size distributions are observed for the AMS species, with a small combustion (likely traffic) organic particle mode and an accumulation mode that contains mainly organic and secondary inorganic compounds. The AMS and BC mass concentrations, size distributions, and diurnal cycles are found to be qualitatively similar to those from most previous field measurements in Mexico City.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...