ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-06
    Description: This study investigated the decadal variation of the direct surface solar radiation (DiSR) and the diffuse surface solar radiation (DfSR) during 1961–2008 in the Shanghai megacity as well as their relationships to Aerosol Optical Depth (AOD) under clear-sky conditions. Three successive periods with unique features of long term variation of DiSR were identified for both clear-sky and all-sky conditions: a "dimming" period from the late 1960s to the mid 1980s, a "stabilization"/"slight brightening" period from the mid 1980s to the mid 1990s, and a "renewed dimming" period thereafter. During the two dimming periods of DiSR, DfSR brightened significantly under clear-sky conditions, indicating that change in atmospheric transparency resulting from aerosol emission has an important role on decadal variation of surface solar radiation (SSR) over this area. The analysis on the relationship between the Moderate-resolution Imaging Spectroradiometer (MODIS) retrieved AOD and the corresponding hourly measurements of DiSR and DfSR under clear-sky conditions clearly revealed that AOD is significantly correlated and anti-correlated with DfSR and DiSR, respectively, both above 99% confidence in all seasons, indicating the great impact of aerosols on SSR through absorption and/or scattering in the atmosphere. In addition, both AOD and the corresponding DiSR and DfSR measured during the satellite passage over Shanghai show obvious weekly cycles. On weekends, AOD is lower than the weekly average, corresponding to higher DiSR and lower DfSR, while the opposite pattern was true for weekdays. Less AOD on weekends due to the reduction of transportation and industrial activities results in enhancement of atmospheric transparency under cloud free conditions so as to increase DiSR and decrease DfSR simultaneously. Results show that aerosol loading from the anthropogenic emissions is an important modulator for the long term variation of SSR in Shanghai.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-23
    Description: Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS−) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr−1, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS− (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr−1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m−3, with values up to 400 ng m−3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20%) in CCN (at a supersaturation (S) of 0.2%) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to sea-salt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-25
    Description: A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 W m−2 (7%) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level in-cloud droplet number concentration and liquid water path of 1.3 cm−3 (1.5%) and 0.22 g m−2 (0.5%), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-08
    Description: Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995–2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to explore the impact of key factors on future emissions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-12-07
    Description: Sea-land and mount-valley circulations are the dominant mesoscale synoptic systems affecting the Beijing area during summertime. Under the influence of these two circulations, the prevailing wind is southwesterly from afternoon to midnight, and then changes to northeasterly till forenoon. In this study, surface ozone (O3), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxide (NOx) and non-methane hydrocarbons (NMHCs) were measured at four sites located along the route of prevailing wind, including two upwind urban sites (Fengtai "FT" and Baolian "BL"), an upwind suburban site (Shunyi "SY") and a downwind rural site (Shangdianzi "SDZ") during 20 June–16 September 2007. The purpose is to improve our understanding of ozone photochemistry in urban and rural areas of Beijing and the influence of urban plumes on ozone pollution in downwind rural areas. It is found that ozone pollution was synchronism in the urban and rural areas of Beijing, coinciding with the regional-scale synoptic processes. Due to the high traffic density and local emissions, the average levels of reactive gases NOx and NMHCs at the non-rural sites were much higher than those at SDZ. The level of long-lived gas CO at SDZ was comparable to, though slightly lower than, at the urban sites. We estimate the photochemical reactivity (LOH and the ozone formation potential (OFP) in the urban (BL) and rural (SDZ) areas using measured CO and NMHCs. The OH loss rate coefficient (LOH by total NMHCs at the BL and SDZ sites are estimated to be 50.7 s-1 and 15.8 s-1, respectively. While alkenes make a major contribution to the LOH, aromatics dominate OFP at both urban and rural sites. With respect to the individual species, CO has the largest ozone formation potential at the rural site, and at the urban site aromatic species are the leading contributors. While the O3 diurnal variations at the four sites are typical for polluted areas, the ozone peak values are found to lag behind one site after another along the route of prevailing wind from SW to NE. Intersection analyses of trace gases reveal that polluted air masses arriving at SDZ were more aged with both higher O3 and Ox concentrations than those at BL. The results indicate that urban plume can transport not only O3 but its precursors, the latter leading more photochemical O3 production when being mixed with background atmosphere in the downwind rural area.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-28
    Description: The trends and spreads of tropospheric and stratospheric temperature are discussed in terms of three groups of datasets in 1979–2008. These datasets include (a) three satellite observations of Microwave Sounding Units (MSU) measurements, (b) five radiosonde observations and (c) five reanalysis products. The equivalent tropospheric and stratospheric temperature from radiosonde and reanalyses are calculated based on the vertical weighting function of the MSU channel 2 (CH2) and channel 4 (CH4) measurements, respectively. The results show that both cooling in the stratosphere and warming in troposphere significantly depends on the datasets and latitudes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-06-13
    Description: A regional haze episode occurred in the Beijing, Tianjin and Hebei province (BTH) area in the North China Plain (NCP) from 16 to 19 January 2010. Data were collected and analyzed during the time frame of 14 through 23 January 2010 to include the haze event. The increase of secondary inorganic pollutants (SO42−, NO3−, NH4+) in PM2.5 was observed simultaneously at four sites, especially in the plain area of the BTH, which could be identified as a common characteristic of pollution haze in east China. The sulfate and nitrate in PM2.5 were mainly formed through the heterogeneous reaction process in the urban area. The organic matter (OM) increased more significantly at the Chengde (CD) site than the other three sites in the plain area. The secondary organic aerosols only existed during haze days at CD but in both haze and non-haze days at the other three sites, which suggested the greater regional impact of secondary formation process during the haze episode. The secondary formation of aerosol was one important formation mechanism of haze. The strong temperature inversion and descending air motions in the planetary boundary layer (PBL) allowed pollutants to accumulate in a shallow layer. The weak surface wind speed produced high pollutants concentration within source regions. The accumulation of pollutants was one main factor in the haze formation. The enhanced southwest wind in the last period of this episode transported pollutants to the downwind area and expanded the regional scope of the haze.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-14
    Description: The trends and spreads of tropospheric and stratospheric temperature are discussed in terms of three groups of datasets in 1979–2008. These datasets include (a) three satellite observations of Microwave Sounding Units (MSU) measurements, (b) five radiosonde observations and (c) five reanalysis products. The equivalent tropospheric and stratospheric temperature from radiosonde and reanalyses are calculated based on the vertical weighting function of the MSU channel 2 (CH2) and channel 4 (CH4) measurements, respectively. The results show that both cooling in the stratosphere and warming in troposphere significantly depends on the datasets and latitudes.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-01
    Description: Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS−) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr−1, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS− (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr−1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m−3, with values up to 400 ng m−3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increase and decrease in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to sea-salt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-15
    Description: This paper investigates the existing stiffness equations for corner-filleted flexure hinges. Three empirical stiffness equations for corner-filleted flexure hinges (each fillet radius, r, equals to 0.1 l; l, the length of a corner-filleted flexure hinge) are formulated based on finite element analysis results for the purpose of overcoming these investigated limitations. Three comparisons made with the existing compliance/stiffness equations and finite element analysis (FEA) results indicate that the proposed empirical stiffness equations enlarge the range of rate of thickness (t, the minimum thickness of a corner-filleted flexure hinge) to length (l), t/l (0.02 ≤ t/l ≤ 1) and ensure the accuracy for each empirical stiffness equation under large deformation. The errors are within 6% when compared to FEA results.
    Print ISSN: 2191-9151
    Electronic ISSN: 2191-916X
    Topics: Physics
    Published by Copernicus on behalf of Delft University of Technology.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...