ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-30
    Description: We estimated the magnitude and composition of southward liquid freshwater transports in the East Greenland Current near 79° N in the Western Fram Strait between 1998 and 2011. Previous studies have found this region to be an important pathway for liquid freshwater export from the Arctic Ocean to the Nordic Seas and the North Atlantic subpolar gyre. Our transport estimates are based on six hydrographic surveys between June and September and concurrent data from moored current meters. We combined concentrations of liquid freshwater, meteoric water (river water and precipitation), sea ice melt and brine from sea ice formation, and Pacific Water, presented in Dodd et al. (2012), with volume transport estimates from an inverse model. The average of the monthly snapshots of southward liquid freshwater transports between 10.6° W and 4° E is 100 ± 23 mSv (3160 ± 730 km3 yr−1), relative to a salinity of 34.9. This liquid freshwater transport consists of about 130% water from rivers and precipitation (meteoric water), 30% freshwater from the Pacific, and −60% (freshwater deficit) due to a mixture of sea ice melt and brine from sea ice formation. Pacific Water transports showed the highest variation in time, effectively vanishing in some of the surveys. Comparison of our results to the literature indicates that this was due to atmospherically driven variability in the advection of Pacific Water along different pathways through the Arctic Ocean. Variations in most liquid freshwater component transports appear to have been most strongly influenced by changes in the advection of these water masses to the Fram Strait. However, the local dynamics represented by the volume transports influenced the liquid freshwater component transports in individual years, in particular those of sea ice melt and brine from sea ice formation. Our results show a similar ratio of the transports of meteoric water and net sea ice melt as previous studies. However, we observed a significant increase in this ratio between the surveys in 1998 and in 2009. This can be attributed to higher concentrations of sea ice melt in 2009 that may have been due to enhanced advection of freshwater from the Beaufort Gyre to the Fram Strait. Known trends and variability in the Arctic liquid freshwater inflow from rivers are not likely to have had a significant influence on the variation of liquid freshwater component transports between our surveys. On the other hand, known freshwater inflow variability from the Pacific could have caused some of the variation we observed in the Fram Strait. The apparent absence of a trend in southward liquid freshwater transports through the Fram Strait and recent evidence of an increase in liquid freshwater storage in the Arctic Ocean raise the question: how fast will the accumulated liquid freshwater be exported from the Arctic Ocean to the deep water formation regions in the North Atlantic and will an increased export occur through the Fram Strait.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-03-20
    Description: We present the late summer distribution and transports of freshwater components in the upper western part of the Fram Strait during 1998, 2004 and 2005. Hydrographic data and and water δ18O values are analyzed to distinguish Atlantic Water, ice-melt (IMW) and freshwater removal from ice formation (IFW), and Meteoric Water (precipitation and riverine sources; MW). Concentrations of these water masses are combined with volume transport estimates from an inverse model. The average liquid freshwater transport relative to a reference salinity of 34.92, was 2500 km3/yr or 80 mSv southward, which is at the upper end of values reported in the literature. Our results indicate that not only the region of the continental slope but also parts of the East Greenland Shelf are important for freshwater transports. The average transports of MW and IFW were 160 mSv (5000 km3/yr) and 90 mSv (2800 km3/yr) southward, respectively. The southward transport of MW was higher in 2005 than in 1998, but was compensated by a higher IFW transport. These differences in transports were associated with stronger southward velocities and the absence of northward velocities over the continental slope and the eastern East Greenland Shelf in 2005. A simulation using the North Atlantic-Arctic Ocean Sea Ice Model (NAOSIM) shows that the high transport of MW in the Fram Strait in 2005 is in agreement with the temporary storage of river water on the Siberian shelf in the mid-1990s, which reached the north of Greenland in 2003. Our results indicate that IFW follows the same pathways as MW before reaching the Fram Strait.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-14
    Description: The East Greenland Current in the Western Fram Strait is an important pathway for liquid freshwater export from the Arctic Ocean to the Nordic Seas and the North Atlantic subpolar gyre. We analysed five hydrographic surveys and data from moored current meters around 79° N in the Western Fram Strait between 1998 and 2010. To estimate the composition of southward liquid freshwater transports, inventories of liquid freshwater and components from Dodd et al. (2012) were combined with transport estimates from an inverse model between 10.6° W and 4° E. The southward liquid freshwater transports through the section averaged to 92 mSv (2900 km3 yr−1), relative to a salinity of 34.9. The transports consisted of 123 mSv water from rivers and precipitation (meteoric water), 28 mSv freshwater from the Pacific and 60 mSv freshwater deficit due to brine from ice formation. Variability in liquid freshwater and component transports appear to have been partly due to advection of these water masses to the Fram Strait and partly due to variations in the local volume transport; an exception are Pacific Water transports, which showed little co-variability with volume transports. An increase in Pacific Water transports from 2005 to 2010 suggests a release of Pacific Water from the Beaufort Gyre, in line with an observed expansion of Pacific Water towards the Eurasian Basin. The co-variability of meteoric water and brine from ice formation suggests joint processes in the main sea ice formation regions on the Arctic Ocean shelves. In addition, enhanced levels of sea ice melt observed in 2009 likely led to reduced transports of brine from ice formation. At least part of this additional ice melt appears to have been advected from the Beaufort Gyre and from north of the Bering Strait towards the Fram Strait. The observed changes in liquid freshwater component transports are much larger than known trends in the Arctic liquid freshwater inflow from rivers and the Pacific. Instead, recent observations of an increased storage of liquid freshwater in the Arctic Ocean suggest a decreased export of liquid freshwater. This raises the question how fast the accumulated liquid freshwater will be exported from the Arctic Ocean to the deep water formation regions in the North Atlantic and if an increased export will occur through the Fram Strait.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-07
    Description: We present the late summer distribution and transports of freshwater components in the upper western part of the Fram Strait during 1998, 2004 and 2005. Hydrographic data and and water δ18O values are analyzed to distinguish Atlantic Water, ice melt (SIM) and freshwater removal from ice formation (IFB), and Meteoric Water (precipitation and riverine sources; MW). Concentrations of these water masses are combined with volume transport estimates from an inverse model. The average liquid freshwater transport relative to a reference salinity of 34.92, was 2500 km3/yr or 80 mSv southward, which is at the upper end of values reported in the literature. Our results indicate that not only the region of the continental slope but also parts of the East Greenland Shelf are important for freshwater transports. We estimate the average transports of of MW and IFB to be between 130 to 160 mSv (4100 to 5000 km3/yr) and 60 to 90 mSv (1900 to 2800 km3/yr) southward, respectively. The southward transport of MW was higher in 2005 than in 1998, but was compensated by a higher IFB transport. These differences in transports were associated with stronger southward velocities and the absence of northward velocities over the continental slope and the eastern East Greenland Shelf in 2005. A simulation using the North Atlantic-Arctic Ocean Sea Ice Model (NAOSIM) shows that the high transport of MW in the Fram Strait in 2005 is in agreement with the temporary storage of river water on the Siberian shelf in the mid-1990s, which reached the north of Greenland in 2003. Our results indicate that the accumulation of increased amounts of river water on the shelves is associated with enhanced ice formation.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...