ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-22
    Description: Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+. Though broad scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass (AGB) at spatial grains ranging from 5 to 250 m (0.025–6.25 ha), and we evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that the spatial sampling error in AGB is large for standard plot sizes, averaging 46.3% for 0.1 ha subplots and 16.6% for 1 ha subplots. Topographically heterogeneous sites showed positive spatial autocorrelation in AGB at scales of 100 m and above; at smaller scales, most study sites showed negative or nonexistent spatial autocorrelation in AGB. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGB leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with current statistical methods. Overall, our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-08
    Description: Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mg ha–1) at spatial scales ranging from 5 to 250 m (0.025–6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20–400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial "dilution" bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-24
    Description: Freshwater discharge from glaciers is increasing across the Arctic in response to anthropogenic climate change, which raises questions about the potential downstream effects in the marine environment. Whilst a combination of long-term monitoring programmes and intensive Arctic field campaigns have improved our knowledge of glacier–ocean interactions in recent years, especially with respect to fjord/ocean circulation, there are extensive knowledge gaps concerning how glaciers affect marine biogeochemistry and productivity. Following two cross-cutting disciplinary International Arctic Science Committee (IASC) workshops addressing the importance of glaciers for the marine ecosystem, here we review the state of the art concerning how freshwater discharge affects the marine environment with a specific focus on marine biogeochemistry and biological productivity. Using a series of Arctic case studies (Nuup Kangerlua/Godthåbsfjord, Kongsfjorden, Kangerluarsuup Sermia/Bowdoin Fjord, Young Sound and Sermilik Fjord), the interconnected effects of freshwater discharge on fjord–shelf exchange, nutrient availability, the carbonate system, the carbon cycle and the microbial food web are investigated. Key findings are that whether the effect of glacier discharge on marine primary production is positive or negative is highly dependent on a combination of factors. These include glacier type (marine- or land-terminating), fjord–glacier geometry and the limiting resource(s) for phytoplankton growth in a specific spatio-temporal region (light, macronutrients or micronutrients). Arctic glacier fjords therefore often exhibit distinct discharge–productivity relationships, and multiple case-studies must be considered in order to understand the net effects of glacier discharge on Arctic marine ecosystems.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-08
    Description: Realistic projections of changes to daily rainfall frequency and magnitude, at catchment scales, are required to assess the potential impacts of climate change on regional water supply. We show that quantile–quantile mapping (QQM) bias-corrected daily rainfall from dynamically downscaled WRF simulations of current climate produce biased hydrological simulations, in a case study for the state of Victoria, Australia (237 629 km2). While the QQM bias correction can remove bias in daily rainfall distributions at each 10 km × 10 km grid point across Victoria, the GR4J rainfall–runoff model underestimates runoff when driven with QQM bias-corrected daily rainfall. We compare simulated runoff differences using bias-corrected and empirically scaled rainfall for several key water supply catchments across Victoria and discuss the implications for confidence in the magnitude of projected changes for mid-century. Our results highlight the imperative for methods that can correct for temporal and spatial biases in dynamically downscaled daily rainfall if they are to be suitable for hydrological projection.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-08
    Description: Dynamical downscaling of future projections of global climate model outputs can provide useful information about plausible and possible changes to water resource availability, for which there is increasing demand in regional water resource planning processes. By explicitly modelling climate processes within and across global climate model grid cells for a region, dynamical downscaling can provide higher-resolution hydroclimate projections and independent (from historical time series), physically plausible future rainfall time series for hydrological modelling applications. However, since rainfall is not typically constrained to observations by these methods, there is often a need for bias correction before use in hydrological modelling. Many bias-correction methods (such as scaling, empirical and distributional mapping) have been proposed in the literature, but methods that treat daily amounts only (and not sequencing) can result in residual biases in certain rainfall characteristics, which flow through to biases and problems with subsequently modelled runoff. We apply quantile–quantile mapping to rainfall dynamically downscaled by the NSW and ACT Regional Climate Modelling (NARCliM) Project in the state of Victoria, Australia, and examine the effect of this on (i) biases both before and after bias correction in different rainfall metrics, (ii) change signals in metrics in comparison to the bias and (iii) the effect of bias correction on wet–wet and dry–dry transition probabilities. After bias correction, persistence of wet states is under-correlated (i.e. more random than observations), and this results in a significant bias (underestimation) of runoff using hydrological models calibrated on historical data. A novel representation of quantile–quantile mapping is developed based on lag-one transition probabilities of dry and wet states, and we use this to explain residual biases in transition probabilities. Representing quantile–quantile mapping in this way demonstrates that any quantile mapping bias-correction method is unable to correct the underestimation of autocorrelation of rainfall sequencing, which suggests that new methods are needed to properly bias-correct dynamical downscaling rainfall outputs.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-10
    Description: The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-05-12
    Description: A photochemical ship-plume model, which can consider the ship-plume dynamics and ship-plume chemistry, simultaneously, was developed to gain a better understanding of atmospheric impact of ship emissions. The model performance was then evaluated by a comparison with the observation data measured on a NOAA WP-3D flight during the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) airborne field campaign. The simulation conditions and parameters, such as meteorological conditions, emission rates, and background gas and particulate species concentrations, were obtained directly and/or inferred indirectly from the ITCT 2K2 observation data. The model-predicted concentrations showed good agreement with the observed concentrations of five ambient species (NOx, NOy, O3, HNO3, and H2SO4) at the eight plume transects by the WP-3D flight with strong correlations around the 1:1 line (0.66≤R≤0.85). In addition, a set of tests were carried out to approximate the magnitude of the reaction probability of HNO3 onto sea-salt particles in the model-observation comparison framework. These results suggest that the reaction probability of HNO3 onto sea-salt particles may be in the order of 10−3 or smaller. The equivalent NOx lifetime throughout the "entire" plume was also estimated from ship-plume chemistry modeling. The NOx lifetimes estimated throughout the "entire ship plume" was 3.36 h. The short NOx lifetime over the entire ship plume clearly shows that the ship-plume chemistry shortens the NOx lifetime considerably. Therefore, the ship-plume chemistry model should be used to model the changes in ship-plume chemical compositions and better evaluate the atmospheric impact of ocean-going ship emissions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-27
    Description: The shapes of raindrops play an important role in inducing polarimetric rainfall algorithms with differential reflectivity (ZDR) and specific differential phase (KDP). The shapes of raindrops have a direct impact on rainfall estimation. However, the characteristics of raindrop size distribution (DSD) are different depending on precipitation type, storm stage of development, and regional and climatological conditions. Therefore, it is necessary to provide assumptions based on raindrop shapes that reflect the rainfall characteristics of the Korean peninsula. In this study, we presented a method to find optimal polarimetric rainfall algorithms on the Korean peninsula using the 2-Dimensional Video Disdrometer (2DVD) and Bislsan S-Band dual-polarization radar. First, a new axis ratio of raindrop relations was developed for the improvement of rainfall estimation. Second, polarimetric rainfall algorithms were derived using different axis ratio relations, and estimated radar-point one-hour rain rate for the differences in polarimetric rainfall algorithms were compared with the hourly rain rate measured by gauge. In addition, radar rainfall estimation was investigated in relation to calibration bias of reflectivity and differential reflectivity. The derived raindrop axis ratio relation from the 2DVD was more oblate than existing relations in the D 〈 1.5 mm and D 〉 5.5 mm range. The R(KDP, ZDR) algorithm based on a new axis ratio relation showed the best result on DSD statistics; however, the R(Zh, ZDR) algorithm showed the best performance for radar rainfall estimation, because the rainfall events used in the analysis were mainly weak precipitation and KDP is noisy at lower rain rates ( ≤ 5 mm hr−1). Thus, the R(KDP, ZDR) algorithm is suitable for heavy rainfall and R(Zh, ZDR) algorithm is suited for light rainfall. The calibration bias of reflectivity (ZH) and differential reflectivity (ZDR) were calculated from the comparison of measured with simulated ZH and ZDR from the 2DVD. The calculated ZH and ZDR bias was used to reduce radar bias, and to produce more accurate rainfall estimation.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-10-09
    Description: A photochemical/dynamic ship-plume model, which can consider the ship-plume dynamics and ship-plume chemistry, simultaneously, was developed to gain a better understanding of atmospheric impact of ship emissions. The model performance was then evaluated by a comparison with the observation data measured on a NOAA WP-3D flight during the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) airborne field campaign. The simulation conditions and parameters, such as meteorological conditions, emission rates, and background gas and particulate species concentrations, were obtained directly and/or inferred indirectly from the ITCT 2K2 observation data. The model-predicted concentrations showed good agreement with the observed concentrations of five ambient species (NOx, NOy, ozone, HNO3, and H2SO4) at the eight plume transects by the WP-3D flight with strong correlations around the 1:1 line (0.64≤R≤0.85). In addition, a set of tests were carried out to approximate the magnitude of the reaction probability of HNO3 onto sea-salt particles in the model-observation comparison framework. These results suggest that the reaction probability of HNO3 onto sea-salt particles may be in the order of 0.05–0.1. The equivalent NOx lifetime throughout the "entire plume" was also estimated from photochemical/dynamic ship-plume modeling. The NOx lifetimes estimated throughout the entire ship plume ranged from 2.64 h to 3.76 h under stable to neutral stability conditions. The short NOx lifetime over the entire ship plume clearly shows that the ship-plume chemistry shortens the NOx lifetime considerably. Therefore, the ship-plume chemistry model should be used to model the changes in ship-plume chemical compositions and better evaluate the atmospheric impact of ocean-going ship emissions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-12-15
    Description: Elevated levels of formaldehyde (HCHO) along the ship corridors have been observed by satellite sensors, such as ESA/ERS-2 GOME (Global Ozone Monitoring Experiment), and were also simulated by global 3-D chemistry-transport models. In this study, three likely sources of the elevated HCHO levels in the ship plumes as well as their contributions to the elevated HCHO levels (budget) were investigated using a newly-developed ship-plume photochemical/dynamic model: (1) primary HCHO emission from ships; (2) secondary HCHO production via the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) emitted from ships; and (3) atmospheric oxidation of CH4 within the ship plumes. For this ship-plume modelling study, the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) ship-plume experiment, which was carried out about 100 km off the coast of California on 8 May 2002 (11:00 local standard time), was chosen as a base study case because it is the best defined in terms of (1) meteorological data, (2) in-plume chemical composition, and (3) background chemical composition. From multiple ship-plume model simulations for the ITCT 2K2 ship-plume experiment case, CH4 oxidation by elevated levels of in-plume OH radicals was found to be the main factor responsible for the elevated levels of HCHO in the ITCT 2K2 ship-plume. More than ~88% of the HCHO for the ITCT 2K2 ship-plume is produced by this atmospheric chemical process, except in the areas close to the ship stacks where the main source of the elevated HCHO levels would be primary HCHO from the ships (due to the deactivation of CH4 oxidation from the depletion of in-plume OH radicals). Because of active CH4 oxidation by OH radicals, the instantaneous chemical lifetime of CH4 (τCH4) decreased to ~0.45 yr inside the ship plume, which is in contrast to τCH4 of ~1.1 yr in the background (up to ~41% decrease) for the ITCT 2K2 ship-plume case. A variety of likely ship-plume situations at three different latitudinal locations within the global ship corridors was also studied to determine the enhancements in the HCHO levels in the marine boundary layer (MBL) influenced by ship emissions. It was found that the ship-plume HCHO levels could be 19.9–424.9 pptv higher than the background HCHO levels depending on the latitudinal locations of the ship plumes (i.e., intensity of solar radiation and temperature), MBL stability and NOx emission rates. On the other hand, NMVOC emissions from ships were not found to be a primary source of photochemical HCHO production inside ship plumes due to their rapid and individual dilution. However, the diluted NMVOCs would contribute to the HCHO productions in the background air.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...