ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-09-13
    Description: Meteor radars have been used to measure the horizontal winds in the mesosphere and lower thermosphere over Castle Eaton (52° N) in the UK and over Esrange (68° N) in Arctic Sweden. We consider a 16-year data set covering the interval 1988–2004 for the UK and a 6-year data set covering the interval 1999–2005 for the Arctic. The signature of the 12.42-h (M2) lunar tide has been identified at both locations. The lunar tide is observed to reach amplitudes as large as 11 ms−1. The Arctic radar has an interferometer and so allows investigation of the vertical structure of the lunar tide. At both locations the tide has maximum amplitudes in winter with a second autumnal maximum. The amplitude is found to increase with height over the 80–100 km height range observed. Vertical wavelengths are very variable, ranging from about 15 km in summer to more than 60 km in winter. Comparisons with the Vial and Forbes (1994) model reveals generally good agreement, except in the case of the summer vertical wavelengths which are observed to be significantly shorter than predicted.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-19
    Description: The English Channel is characterised by strong tidal currents and a wide tidal range, such that their influence on surges is expected to be non-negligible. In order to better assess storm surges in this zone, tide-surge interactions are investigated. A preliminary data analysis on hourly surges indicates some preferential times of occurrence of large storm surges at rising tide, especially in Dunkerque. To examine this further, a numerical modelling approach is chosen, based on the 2DH shallow-water model (MARS). The surges are computed both with and without tide interaction. For the two selected events (the November 2007 North Sea and March 2008 Atlantic storms), it appears that the instantaneous tide-surge interaction is seen to be non-negligible in the eastern half of the English Channel, reaching values of 74 cm (i.e. 50% of the same event maximal storm surge) in the Dover Strait for the studied cases. This interaction decreases in westerly direction. In the risk-analysis community in France, extreme water levels have been determined assuming skew surges and tide as independent. The same hydrodynamic model is used to investigate this dependence in the English Channel. Simple computations are performed with the same meteorological forcing, while varying the tidal amplitude, and the skew surge differences DSS are analysed. Skew surges appear to be tide-dependent, with negligible values of DSS (
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-06-12
    Description: Meteor radars have been used to measure the horizontal winds in the mesosphere and lower thermosphere over Castle Eaton (52° N) in the UK and over Esrange (68° N) in Arctic Sweden. We consider a 16-year data set covering the interval 1988–2004 for the UK and a 6-year data set covering the interval 1999–2005 for the Arctic. The signature of the 12.42-h (M2) lunar tide has been identified at both locations. The lunar tide is observed to reach amplitudes as large as 11 ms−1. The Arctic radar has an interferometer and so allows investigation of the vertical structure of the lunar tide. At both locations the tide has maximum amplitudes in winter with a second autumnal maximum. The amplitude is found to increase with height over the 80–100 km height range observed. Vertical wavelengths are very variable, ranging from about 15 km in summer to more than 60 km in winter. Comparisons with the Vial and Forbes, 1994 model reveals generally good agreement, except in the case of the summer vertical wavelengths which are observed to be significantly shorter than predicted.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-01-31
    Description: A meteor radar in the UK (near 52° N) has been used to measure the mean winds of the mesosphere/lower-thermosphere (MLT) region over the period 1988–2000. The seasonal course and interannual variability is characterised and comparisons are made with a number of models. Annual mean wind trends were found to be + 0.37 ms-1 yr-1 for the zonal component and + 0.157 ms-1 yr-1 for the meridional component. Seasonal means revealed significant trends in the case of meridional winds in spring ( + 0.38 ms-1 yr-1) and autumn ( + 0.29 ms-1 yr-1), and zonal winds in summer ( + 0.48 ms-1 yr-1) and autumn ( + 0.38 ms-1 yr-1). Significant correlation coefficients, R, between the sunspot number and seasonal mean wind are found in four instances. In the case of the summer zonal winds, R = + 0.732; for the winter meridional winds, R = - 0.677; for the winter zonal winds, R = - 0.472; and for the autumn zonal winds R = + 0.508.Key words. Meteorology and atmospheric dynamics (climatology; general circulation; middle atmospheric dynamics)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-05-31
    Description: The longitudinal structure of the day-to-day variations of semidiurnal tide amplitudes is analysed based on coordinated mesosphere/lower thermosphere wind measurements at several stations during three winter campaigns. Possible excitation sources of these variations are discussed. Special attention is given to a nonlinear interaction between the semidiurnal tide and the day-to-day mean wind variations. Data processing includes the S-transform analysis which takes into account transient behaviour of secondary waves. It is shown that strong tidal modulations appear during a stratospheric warming and may be caused by aperiodic mean wind variations during this event.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-10-31
    Description: Meteor radars located in Bulgaria and the UK have been used to simultaneously measure winds in the mesosphere/lower-thermosphere region near 42.5°N, 26.6°E and 54.5°N, 3.9°W, respectively, over the period January 1991 to June 1992. The data have been used to investigate planetary waves and diurnal and semidiurnal tidal variability over the two sites. The tidal amplitudes at each site exhibit fluctuations as large as 300% on time scales from a few days to the intra-seasonal, with most of the variability being at intra-seasonal scales. Spectral and cross-wavelet analysis reveals closely related tidal variability over the two sites, indicating that the variability occurs on spatial scales large compared to the spacing between the two radars. In some, but not all, cases, periodic variability of tidal amplitudes is associated with simultaneously present planetary waves of similar period, suggesting the variability is a consequence of non-linear interaction. Calculation of the zonal wave number of a number of large amplitude planetary waves suggests that during summer 1991 the 2-day wave had a zonal wave number of 3, but that during January–February 1991 it had a zonal wave number of 4.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-11-30
    Description: A meteor radar located at Sheffield in the UK has been used to measure wind oscillations with periods in the range 10–28 days in the mesosphere/lower-thermosphere region at 53.5°N, 3.9°W from January 1990 to August 1994. The data reveal a motion field in which wave activity occurs over a range of frequencies and in episodes generally lasting for less than two months. A seasonal cycle is apparent in which the largest observed amplitudes are as high as 14 ms–1 and are observed from January to mid-April. A minimum in activity occurs in late June to early July. A second, smaller, maximum follows in late summer/autumn where amplitudes reach up to 7–10 ms–1. Considerable interannual variability is apparent but wave activity is observed in the summers of all the years examined, albeit at very small amplitudes near mid summer. This behaviour suggests that the equatorial winds in the mesopause region do not completely prevent inter-hemispheric ducting of the wave from the winter hemisphere, or that it is generated in situ.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-03-19
    Description: Results from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E), Esrange (68°N, 21°E), Castle Eaton (UK) (53°N, 2°W), and Obninsk (55°N, 37°E) during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs) are shown to appear simultaneously at high- and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51–53h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205), we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47–48h and S=4 at mid-altitudes. We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47–48h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher) zonal wave-number components increase (decrease) with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47–48h and the 9–10day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6–7day wave with S=1, possibly arising from nonlinear decoupling of the 60-h wave with S=3. The starting mechanism for this decoupling is the Rossby wave instability (e.g. Baines, 1976). This result is consistent with the day-to-day wind variability during the observed QTDW events. An interesting feature of the final stage of the observed QTDW activity in summer 2000 is the occurrence of strong 4–5 day waves with S=3. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; general or miscellaneous)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...