ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-03-14
    Description: Marine science and engineering commonly require reliable information about seafloor depth (bathymetry), e.g. for studies of ocean circulation, bottom habitats, fishing resources, sediment transport, geohazards and site selection for platforms and cables. Baltic Sea bathymetric properties are analysed here using the using the newly released Digital Bathymetric Model (DBM) by the European Marine Observation and Data Network (EMODnet). The analyses include hypsometry, volume, descriptive depth statistics, and km-scale seafloor ruggedness, i.e. terrain heterogeneity, for the Baltic Sea as a whole as well as for 17 sub-basins defined by the Baltic Marine Environment Protection Commission (HELCOM). We compare the new EMODnet DBM with IOWTOPO, the previously most widely used DBM of the Baltic Sea which has served as the primary gridded bathymetric resource in physical and environmental studies for nearly two decades. The area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper across the Åland Sea is specifically analysed in terms of depths and locations of critical bathymetric sills. The EMODnet DBM provides a bathymetric sill depth of 88 m at the northern side of the Åland Sea and 60 m at the southern side, differing from previously identified sill depths of 100 and 70 m respectively. High-resolution multibeam bathymetry acquired from this deep water exchange path, where vigorous bottom currents interacted with the seafloor, allows us to assess what we are missing in presently available DBMs in terms of physical characterisation and our ability to then interpret seafloor processes and highlights the need for continued work towards complete high-resolution mapping of the Baltic Sea seafloor.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-13
    Description: Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-21
    Description: Ice sheet grounding lines not only define where an ice sheet flux meets and interacts with the ocean, but also represent sedimentary environments, where an upstream sediment flux reaches the ice sheet margin. Landforms that form at the grounding lines hold the potential to reveal the nature of the processes that govern this dynamic and potentially vulnerable environment. Here we analyse a large dataset (n=6,275) of grounding line landforms mapped on the western Ross Sea continental shelf from high-resolution geophysical data. Their morphometric properties divide the population into two distinct morphotypes: recessional moraines (consistently narrow, closely spaced, low amplitude, symmetric, and straight), and grounding zone wedges (broad, widely spaced, higher amplitude, asymmetric, sinuous, and highly variable). Landforms transition abruptly between morphotypes, both spatially along a continuous grounding line position and temporally within a retreat sequence. We find minimal effect of water depth or topography on the production of one landform or the other, and find no conclusive evidence for morphology being determined by the presence or absence of an ice shelf. Instead, we find that both sediment supply to the grounding line and the time for which a grounding line is occupied are important in determining the resultant landform morphology. The development of grounding zone wedge asymmetry through sediment progradation representing longevity of a grounding line position ("stable"), while the development of sinuosity due in part to basal meltwater flushing of sediment through grounding line embayments is linked with large magnitude retreat events ("unstable"). We find that while longer duration grounding line positions form grounding zone wedges and are destabilised in the form of larger magnitude retreat, short-lived grounding line positions manifest as recessional moraines back-step with small magnitude retreat events. These two resulting retreat styles appear to reflect differences in sensitivity to processes that control grounding line retreat both in space and time.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-17
    Description: The resilience of a marine-based ice sheet is strongly governed by the stability of its grounding lines, which are in turn sensitive to ocean-induced melting, calving, and flotation of the ice margin. Since the grounding line is also a sedimentary environment, the constructional landforms that are built here may reflect elements of the processes governing this dynamic and potentially vulnerable environment. Here we analyse a large dataset (n =  6275) of grounding line landforms mapped on the western Ross Sea continental shelf from high-resolution geophysical data. The population is divided into two distinct morphotypes by their morphological properties: recessional moraines (consistently narrow, closely spaced, low amplitude, symmetric, and straight) and grounding zone wedges (broad, widely spaced, higher amplitude, asymmetric, sinuous, and highly variable). Landform morphotypes cluster with alike forms that transition abruptly between morphotypes both spatially and within a retreat sequence. Their form and distribution are largely independent of water depth, bed slope, and position relative to glacial troughs. Similarly, we find no conclusive evidence for morphology being determined by the presence or absence of an ice shelf. Instead, grounding zone wedge construction is favoured by a higher sediment flux and a longer-held grounding position. We propose two endmember modes of grounding line retreat: (1) an irregular mode, characterised by grounding zone wedges with longer standstills and accompanied by larger-magnitude retreat events, and (2) a steady mode, characterised by moraine sequences that instead represent more frequent but smaller-magnitude retreat events. We suggest that while sediment accumulation and progradation may prolong the stability of a grounding line position, progressive development of sinuosity in the grounding line due to spatially variable sediment delivery likely destabilises the grounding position by enhanced ablation, triggering large-magnitude retreat events. Here, the concept of stability is multifaceted and paradoxical, and neither mode can be characterised as marking fast or slow retreat. Diagnosing grounding line stability based on landform products should be considered for a wider geographic range, yet this large dataset of landforms prompts the need to better understand the sensitivity of marine-based grounding lines to processes and feedbacks governing retreat and what stability means in the context of future grounding line behaviour.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-16
    Description: Baltic Sea bathymetric properties are analysed here using the newly released digital bathymetric model (DBM) by the European Marine Observation and Data Network (EMODnet). The analyses include hypsometry, volume, descriptive depth statistics, and kilometre-scale seafloor ruggedness, i.e. terrain heterogeneity, for the Baltic Sea as a whole as well as for 17 sub-basins defined by the Baltic Marine Environment Protection Commission (HELCOM). We compare the new EMODnet DBM with IOWTOPO the previously most widely used DBM of the Baltic Se aproduced by the Leibniz-Institut für Ostseeforschung Warnemünde (IOW), which has served as the primary gridded bathymetric resource in physical and environmental studies for nearly two decades. The area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper across the Åland Sea is specifically analysed in terms of depths and locations of critical bathymetric sills. The EMODnet DBM provides a bathymetric sill depth of 88 m at the northern side of the Åland Sea and 60 m at the southern side, differing from previously identified sill depths of 100 and 70 m, respectively. High-resolution multibeam bathymetry acquired from this deep water exchange path, where vigorous bottom currents interacted with the seafloor, allows us to assess what presently available DBMs are missing in terms of physical characterization of the seafloor. Our study highlights the need for continued work towards complete high-resolution mapping of the Baltic Sea seafloor.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...