ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-08
    Description: The concentrations of submicron aerosol particles in maritime regions around Antarctica are influenced by the extent of sea ice. This effect is two ways: on one side, sea ice regulates the production of particles by sea spray (primary aerosols); on the other side, it hosts complex communities of organisms emitting precursors for secondary particles. Past studies documenting the chemical composition of fine aerosols in Antarctica indicate various potential primary and secondary sources active in coastal areas, in offshore marine regions, and in the sea ice itself. In particular, beside the well-known sources of organic and sulfur material originating from the oxidation of dimethylsulfide (DMS) produced by microalgae, recent findings obtained during the 2015 PEGASO cruise suggest that nitrogen-containing organic compounds are also produced by the microbiota colonizing the marginal ice zone. To complement the aerosol source apportionment performed using online mass spectrometric techniques, here we discuss the outcomes of offline spectroscopic analysis performed by nuclear magnetic resonance (NMR) spectroscopy. In this study we (i) present the composition of ambient aerosols over open-ocean waters across bioregions, and compare it to the composition of (ii) seawater samples and (iii) bubble-bursting aerosols produced in a sea-spray chamber onboard the ship. Our results show that the process of aerosolization in the tank enriches primary marine particles with lipids and sugars while depleting them of free amino acids, providing an explanation for why amino acids occurred only at trace concentrations in the marine aerosol samples analyzed. The analysis of water-soluble organic carbon (WSOC) in ambient submicron aerosol samples shows distinct NMR fingerprints for three bioregions: (1) the open Southern Ocean pelagic environments, in which aerosols are enriched with primary marine particles containing lipids and sugars; (2) sympagic areas in the Weddell Sea, where secondary organic compounds, including methanesulfonic acid and semivolatile amines abound in the aerosol composition; and (3) terrestrial coastal areas, traced by sugars such as sucrose, emitted by land vegetation. Finally, a new biogenic chemical marker, creatinine, was identified in the samples from the Weddell Sea, providing another confirmation of the importance of nitrogen-containing metabolites in Antarctic polar aerosols.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-29
    Description: We study the crustal structure under the Eastern and Southern Alps using ambient noise tomography. We use cross-correlations of ambient seismic noise between pairs of 71 permanent stations and 19 stations of the Eastern Alpine Seismic Investigation (EASI) profile to derive new 3D shear velocity models for the crust. Continuous records from 2014 and 2015 are cross-correlated to estimate Green's functions of Rayleigh and Love waves propagating between the station pairs. Group velocities extracted from the cross-correlations are inverted to obtain isotropic 3D Rayleigh- and Love-wave shear-wave velocity models. Our models image several velocity anomalies and contrasts and reveal details of the crustal structure. Velocity variations at short periods correlate very closely with the lithologies of tectonic units at the surface and projected to depth. Low-velocity zones, associated with the Po and Molasse sedimentary basins, are imaged well to the south and north of the Alps, respectively. We find large high-velocity zones associated with the crystalline basement that forms the core of the Tauern Window. Small-scale velocity anomalies are also aligned with geological units of the Austroalpine nappes. Clear velocity contrasts in the Tauern Window along vertical cross sections of the velocity model show the depth extent of the tectonic units and their bounding faults. A mid-crustal velocity contrast is interpreted as a manifestation of intracrustal decoupling in the Eastern Alps that accommodated eastward escape of the Alcapa block.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-26
    Description: A fundamental understanding of the processes that control Antarctic aerosols is necessary in determining the aerosol impacts on climate-relevant processes from Antarctic ice cores to clouds. The first in situ observational online composition measurements by an aerosol mass spectrometer (AMS) of Antarctic aerosols were only recently performed during the Two-Season Ozone Depletion and Interaction with Aerosols Campaign (2ODIAC). 2ODIAC was deployed to sea ice on the Ross Sea near McMurdo Station over two field seasons: austral spring–summer 2014 and winter–spring 2015. The results presented here focus on the overall trends in aerosol composition primarily as functions of air masses and local meteorological conditions. The results suggest that the impact of long-range air mass back trajectories on either the absolute or relative concentrations of the aerosol constituents measured by (and inferred from) an AMS at a coastal location is small relative to the impact of local meteorology. However, when the data are parsed by wind speed, two observations become clear. First, a critical wind speed is required to loft snow from the surface, which, in turn, increases particle counts in all measured size bins. Second, elevated wind speeds showed increased aerosol chloride and sodium. Further inspection of the AMS data shows that the increased chloride concentrations have more of a “fast-vaporizing” nature than chloride measured at low wind speed. Also presented are the Cl:Na ratios of snow samples and aerosol filter samples, as measured by ion chromatography, as well as non-chloride aerosol constituents measured by the AMS. Additionally, submicron aerosol iodine and bromine concentrations as functions of wind speed are also presented. The results presented here suggest that aerosol composition in coastal Antarctica is a strong function of wind speed and that the mechanisms determining aerosol composition are likely linked to blowing snow.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-12
    Description: Combustion of biomass, garbage, and fossil fuels in South Asia has led to poor air quality in the region and has uncertain climate forcing impacts. Online measurements of submicron aerosol (PM1) emissions were conducted as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) to investigate and report emission factors (EFs) and vacuum aerodynamic diameter (dva) size distributions from prevalent but poorly characterized combustion sources. The online aerosol instrumentation included a “mini” aerosol mass spectrometer (mAMS) and a dual-spot eight-channel aethalometer (AE33). The mAMS measured non-refractory PM1 mass, composition, and size. The AE33-measured black carbon (BC) mass and estimated light absorption at 370 nm due to organic aerosol or brown carbon. Complementary gas-phase measurements of carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4) were collected using a Picarro Inc. cavity ring-down spectrometer (CRDS) to calculate fuel-based EFs using the carbon mass balance approach. The investigated emission sources include open garbage burning, diesel-powered irrigation pumps, idling motorcycles, traditional cookstoves fueled with dung and wood, agricultural residue fires, and coal-fired brick-making kilns, all of which were tested in the field. Open-garbage-burning emissions, which included mixed refuse and segregated plastics, were found to have some of the largest PM1 EFs (3.77–19.8 g kg−1) and the highest variability of the investigated emission sources. Non-refractory organic aerosol (OA) size distributions measured by the mAMS from garbage-burning emissions were observed to have lognormal mode dva values ranging from 145 to 380 nm. Particle-phase hydrogen chloride (HCl) was observed from open garbage burning and was attributed to the burning of chlorinated plastics. Emissions from two diesel-powered irrigation pumps with different operational ages were tested during NAMaSTE. Organic aerosol and BC were the primary components of the emissions and the OA size distributions were centered at ∼80 nm dva. The older pump was observed to have significantly larger EFOA than the newer pump (5.18 g kg−1 compared to 0.45 g kg−1) and similar EFBC. Emissions from two distinct types of coal-fired brick-making kilns were investigated. The less advanced, intermittently fired clamp kiln was observed to have relatively large EFs of inorganic aerosol, including sulfate (0.48 g kg−1) and ammonium (0.17 g kg−1), compared to the other investigated emission sources. The clamp kiln was also observed to have the largest absorption Ångström exponent (AAE = 4) and organic carbon (OC) to BC ratio (OC : BC = 52). The continuously fired zigzag kiln was observed to have the largest fraction of sulfate emissions with an EFSO4 of 0.96 g kg−1. Non-refractory aerosol size distributions for the brick kilns were centered at ∼400 nm dva. The biomass burning samples were all observed to have significant fractions of OA and non-refractory chloride; based on the size distribution results, the chloride was mostly externally mixed from the OA. The dung-fueled traditional cookstoves were observed to emit ammonium, suggesting that the chloride emissions were partially neutralized. In addition to reporting EFs and size distributions, aerosol optical properties and mass ratios of OC to BC were investigated to make comparisons with other NAMaSTE results (i.e., online photoacoustic extinctiometer (PAX) and off-line filter based) and the existing literature. This work provides critical field measurements of aerosol emissions from important yet under-characterized combustion sources common to South Asia and the developing world.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-15
    Description: The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19 g kg−1 with major contributions from OC (7 %), sulfate expected to be in the form of sulfuric acid (31.9 %), and other chemicals not measured (e.g., particle-bound water). For the clamp kiln, EFPM2.5 ranged from 8 to 13 g kg−1, with major contributions from OC (63.2 %), sulfate (23.4 %), and ammonium (16 %). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4 ± 1.2 g kg−1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125 ± 23 g kg−1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and three-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from three-stone cooking fires (7.6–73 g kg−1), followed by traditional mud stoves (5.3–19.7 g kg−1), mud stoves with a chimney for exhaust (3.0–6.8 g kg−1), rocket stoves (1.5–7.2 g kg−1), induced-draft stoves (1.2–5.7 g kg−1), and the bhuse chulo stove (3.2 g kg−1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8 ± 1.3 to 0.71 ± 0.45 g kg−1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-02
    Description: Understanding the sources and evolution of aerosols is crucial for constraining the impacts that aerosols have on a global scale. An unanswered question in atmospheric science is the source and evolution of the Antarctic aerosol population. Previous work over the continent has primarily utilized low temporal resolution aerosol filters to answer questions about the chemical composition of Antarctic aerosols. Bulk aerosol sampling has been useful in identifying seasonal cycles in the aerosol populations, especially in populations that have been attributed to Southern Ocean phytoplankton emissions. However, real-time, high-resolution chemical composition data are necessary to identify the mechanisms and exact timing of changes in the Antarctic aerosol. The recent 2ODIAC (2-Season Ozone Depletion and Interaction with Aerosols Campaign) field campaign saw the first ever deployment of a real-time, high-resolution aerosol mass spectrometer (SP-AMS – soot particle aerosol mass spectrometer – or AMS) to the continent. Data obtained from the AMS, and a suite of other aerosol, gas-phase, and meteorological instruments, are presented here. In particular, this paper focuses on the aerosol population over coastal Antarctica and the evolution of that population in austral spring. Results indicate that there exists a sulfate mode in Antarctica that is externally mixed with a mass mode vacuum aerodynamic diameter of 250 nm. Springtime increases in sulfate aerosol are observed and attributed to biogenic sources, in agreement with previous research identifying phytoplankton activity as the source of the aerosol. Furthermore, the total Antarctic aerosol population is shown to undergo three distinct phases during the winter to summer transition. The first phase is dominated by highly aged sulfate particles comprising the majority of the aerosol mass at low wind speed. The second phase, previously unidentified, is the generation of a sub-250 nm aerosol population of unknown composition. The second phase appears as a transitional phase during the extended polar sunrise. The third phase is marked by an increased importance of biogenically derived sulfate to the total aerosol population (photolysis of dimethyl sulfate and methanesulfonic acid (DMS and MSA)). The increased importance of MSA is identified both through the direct, real-time measurement of aerosol MSA and through the use of positive matrix factorization on the sulfur-containing ions in the high-resolution mass-spectral data. Given the importance of sub-250 nm particles, the aforementioned second phase suggests that early austral spring is the season where new particle formation mechanisms are likely to have the largest contribution to the aerosol population in Antarctica.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-27
    Description: Safe operations of forest practices in mountainous regions require effective development planning to mitigate hazards posed by landslides. British Columbia, Canada, has for the past two decades implemented landslide risk management policies aimed at reducing the impacts of the forest industry on landslides; it is required that timber harvesting sites are evaluated for their potential or existing impacts on terrain stability. Statistical landslide susceptibility modelling can enhance this evaluation by geographically highlighting potential hazardous areas. In addition, these statistical models can also improve our understanding of regional landslide controlling factors. The purpose of this research was to explore the regional effects of forest harvesting activities, topography, precipitation and geology on landslides initiated during an extreme rainfall event in November 2006 on Vancouver Island, British Columbia. These effects were analysed with a nonparametric statistical method, the generalized additive model (GAM). Although topography was the strongest predictor of landslide initiation, low density forest interpreted as regrowth areas and proximity to forest service roads were jointly associated with a six- to nine-fold increase in the odds of landslide initiation, while accounting for other environmental cofounders. This result highlights the importance of continuing proper landslide risk management to control the effects of forest practices on landslide initiation.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-04-10
    Description: Landslide susceptibility maps are helpful tools to identify areas which might be prone to future landslide occurrence. As more and more national and provincial authorities demand for these maps to be computed and implemented in spatial planning strategies, the quality of the landslide susceptibility map and of the model applied to compute them is of high interest. In this study we focus on the analysis of the model performance by a repeated k-fold cross-validation with spatial and random subsampling. Furthermore, the focus is on the analysis of the implications of uncertainties expressed by confidence intervals of model predictions. The cross-validation performance assessments reflects the variability of performance estimates compared to single hold-out validation approaches that produce only a single estimate. The analysis of the confidence intervals shows that in 85% of the study area, the 95% confidence limits fall within the same susceptibility class. However, there are cases where confidence intervals overlap with all classes from the lowest to the highest class of susceptibility to landsliding. Locations whose confidence intervals intersect with more than one susceptibility class are of high interest because this uncertainty may affect spatial planning processes that are based on the susceptibility level.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-06-22
    Description: Safe operations of forest practices in mountainous regions require effective development planning to mitigate hazards posed by landslides. British Columbia, Canada, has for the past 2 decades implemented landslide risk management policies aimed at reducing the impacts of the forestry industry on landslides. Consequently, it is required that timber harvesting sites be evaluated for their potential or existing impacts on terrain stability. Statistical landslide susceptibility modelling can enhance this evaluation by geographically highlighting potential hazardous areas. In addition, these statistical models can also improve our understanding of regional landslide controlling factors. The purpose of this research was to explore the regional effects of forest harvesting activities, topography, precipitation and geology on landslides initiated during an extreme rainfall event in November 2006 on Vancouver Island, British Columbia. These effects were analyzed with a nonparametric statistical method, the generalized additive model (GAM). Although topography was the strongest predictor of landslide initiation, low density forest interpreted as regrowth areas and proximity to forest service roads were jointly associated with a 6- to 9-fold increase in the odds of landslide initiation, while accounting for other environmental confounders. This result highlights the importance of continuing proper landslide risk management to control the effects of forest practices on landslide initiation.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-16
    Description: Landslide susceptibility maps are helpful tools to identify areas potentially prone to future landslide occurrence. As more and more national and provincial authorities demand for these maps to be computed and implemented in spatial planning strategies, several aspects of the quality of the landslide susceptibility model and the resulting classified map are of high interest. In this study of landslides in Lower Austria, we focus on the model form uncertainty to assess the quality of a flexible statistical modelling technique, the generalized additive model (GAM). The study area (15 850 km2) is divided into 16 modelling domains based on lithology classes. A model representing the entire study area is constructed by combining these models. The performances of the models are assessed using repeated k-fold cross-validation with spatial and random subsampling. This reflects the variability of performance estimates arising from sampling variation. Measures of spatial transferability and thematic consistency are applied to empirically assess model quality. We also analyse and visualize the implications of spatially varying prediction uncertainties regarding the susceptibility map classes by taking into account the confidence intervals of model predictions. The 95% confidence limits fall within the same susceptibility class in 85% of the study area. Overall, this study contributes to advancing open communication and assessment of model quality related to statistical landslide susceptibility models.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...