ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-05-31
    Description: Microorganisms in groundwater play an important role in aquifer biogeochemical cycles and water quality. However, the mechanisms linking the functional diversity of microbial populations and the groundwater physico-chemistry are still not well understood due to the complexity of interactions between surface and subsurface. Within the framework of Hainich (north-western Thuringia, central Germany) Critical Zone Exploratory of the Collaborative Research Centre AquaDiva, we used the relative abundances of phospholipid-derived fatty acids (PLFAs) to link specific biochemical markers within the microbial communities to the spatio-temporal changes of the groundwater physico-chemistry. The functional diversities of the microbial communities were mainly correlated with groundwater chemistry, including dissolved O2, Fet and NH4+ concentrations. Abundances of PLFAs derived from eukaryotes and potential nitrite-oxidizing bacteria (11Me16:0 as biomarker for Nitrospira moscoviensis) were high at sites with elevated O2 concentration where groundwater recharge supplies bioavailable substrates. In anoxic groundwaters more rich in Fet, PLFAs abundant in sulfate-reducing bacteria (SRB), iron-reducing bacteria and fungi increased with Fet and HCO3− concentrations, suggesting the occurrence of active iron reduction and the possible role of fungi in meditating iron solubilization and transport in those aquifer domains. In more NH4+-rich anoxic groundwaters, anammox bacteria and SRB-derived PLFAs increased with NH4+ concentration, further evidencing the dependence of the anammox process on ammonium concentration and potential links between SRB and anammox bacteria. Additional support of the PLFA-based bacterial communities was found in DNA- and RNA-based Illumina MiSeq amplicon sequencing of bacterial 16S rRNA genes, which showed high predominance of nitrite-oxidizing bacteria Nitrospira, e.g. Nitrospira moscoviensis, in oxic aquifer zones and of anammox bacteria in more NH4+-rich anoxic groundwater. Higher relative abundances of sequence reads in the RNA-based datasets affiliated with iron-reducing bacteria in more Fet-rich groundwater supported the occurrence of active dissimilatory iron reduction. The functional diversity of the microbial communities in the biogeochemically distinct groundwater assemblages can be largely attributed to the redox conditions linked to changes in bioavailable substrates and input of substrates with the seepage. Our results demonstrate the power of complementary information derived from PLFA-based and sequencing-based approaches.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-03
    Description: During the last decade compound-specific deuterium (δ2H) analysis of plant leaf wax-derived n-alkanes has become a promising and popular tool in paleoclimate research. This is based on the widely accepted assumption that n-alkanes in soils and sediments generally reflect δ2H of precipitation (δ2Hprec). Recently, several authors suggested that δ2H of n-alkanes (δ2H,sub〉n-alkanes) can also be used as proxy in paleoaltimetry studies. Here we present results from a δ2H transect study (~1500 to 4000 m a.s.l.) carried out on precipitation and soil samples taken from the humid southern slopes of Mt. Kilimanjaro. Contrary to earlier suggestions, a distinct altitude effect in δ2Hprec is present above ~2000 m a.s.l., i.e. δ2Hprec values become more negative with increasing altitude. The compound-specific δ2H values of nC27 and nC29 do not confirm this altitudinal trend, but rather become more positive both in the O-layers (organic layers) and the Ah-horizons (mineral topsoils). Although our δ2Hn-alkane results are in agreement with previously published results from the southern slopes of Mt. Kilimanjaro (Peterse et al., 2009, BG, 6, 2799–2807), a major re-interpretation is required given that the δ2Hn-alkane results do not reflect the δ2Hprec results. The theoretical framework for this re-interpretation is based on the evaporative isotopic enrichment of leaf water associated with transpiration process. Modelling results show that relative humidity, decreasing considerably along the southern slopes of Mt. Kilimanjaro (from 78% at ~ 2000 m a.s.l. to 51% at 4000 m a.s.l.), strongly controls δ2Hleaf water. The modelled δ2H leaf water enrichment along the altitudinal transect matches well the measured 2H leaf water enrichment as assessed by using the δ2Hprec and δ2Hn-alkane results and biosynthetic fractionation during n-alkane biosynthesis in leaves. Given that our results clearly demonstrate that n-alkanes in soils do not simply reflect δ2Hprec but rather δ2Hleaf water, we conclude that care has to be taken not to over-interpret δ2Hn-alkane records from soils and sediments when reconstructing δ2H of paleoprecipitation. Both in paleoaltimetry and in paleoclimate studies changes in relative humidity and consequently in δ2Hn-alkane values can completely mask altitudinally or climatically-controlled changes in δ2Hprec.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-16
    Description: Current Land Surface Models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. These common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to two meters. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on- and desorption from soil minerals, diffusion of SOC and DOC and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth- dependent parameterization of the new input model parameters, such as the decomposition times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global warming.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-12-22
    Description: Biologically produced molecular hydrogen (H2) is characterized by a very strong depletion in deuterium. Although the biological source to the atmosphere is small compared to photochemical or combustion sources, it makes an important contribution to the global isotope budget of molecular hydrogen (H2). Large uncertainties exist in the quantification of the individual production and degradation processes that contribute to the atmospheric budget, and isotope measurements are a tool to distinguish the contributions from the different sources. Measurements of δD from the various H2 sources are scarce and for biologically produced H2 only very few measurements exist. Here the first systematic study of the isotopic composition of biologically produced H2 is presented. We investigated δD of H2 produced in a biogas plant, covering different treatments of biogas production, and from several H2 producing microorganisms such as bacteria or green algae. A Keeling plot analysis provides a robust overall source signature of δD = –712‰ (±13‰) for the samples from the biogas reactor (at 38 °C, δDH2O = 73.4‰), with a fractionation constant ϵH2−H2O of –689‰ (±20‰). The pure culture samples from different microorganisms give a mean source signature of δD = –728‰ (±39‰), and a fractionation constant ϵH2−H2O of –711‰ (±45‰) between H2 and the water, respectively. The results confirm the massive deuterium depletion of biologically produced H2 as was predicted by calculation of the thermodynamic fractionation factors for hydrogen exchange between H2 and water vapor. As expected for a thermodynamic equilibrium, the fractionation factor is largely independent of the substrates used and the H2 production conditions. The predicted equilibrium fractionation coefficient is positively correlated with temperature and we measured a change of 2.2‰/°C between 45 °C and 60 °C. This is in general agreement with the theoretical predictions. Our best estimate for ϵH2−H2O at a temperature of 20 °C is –728‰ for biologically produced H2, and we suggest using this value in future global H2 isotope budget calculations and models.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-10-19
    Description: We investigated the fate of root and litter derived carbon into soil organic matter and dissolved organic matter in soil profiles, in order to explain unexpected positive effects of plant diversity on carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment. In addition to the main biodiversity experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m−2 and 263 g C m−2 to 20 cm depth, while 71 g C m−2 and 393 g C m−2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 11 and 15% of soil organic carbon were derived from plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of carbon newly stored in soil, whereas with double litter this corresponds to twice the amount of stored carbon. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution and contributed to the observed carbon storage in deeper horizons.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-24
    Description: Biologically produced molecular hydrogen (H2) is characterised by a very strong depletion in deuterium. Although the biological source to the atmosphere is small compared to photochemical or combustion sources, it makes an important contribution to the global isotope budget of H2. Large uncertainties exist in the quantification of the individual production and degradation processes that contribute to the atmospheric budget, and isotope measurements are a tool to distinguish the contributions from the different sources. Measurements of δ D from the various H2 sources are scarce and for biologically produced H2 only very few measurements exist. Here the first systematic study of the isotopic composition of biologically produced H2 is presented. In a first set of experiments, we investigated δ D of H2 produced in a biogas plant, covering different treatments of biogas production. In a second set of experiments, we investigated pure cultures of several H2 producing microorganisms such as bacteria or green algae. A Keeling plot analysis provides a robust overall source signature of δ D = −712‰ (±13‰) for the samples from the biogas reactor (at 38 °C, δ DH2O= +73.4‰), with a fractionation constant ϵH2-H2O of −689‰ (±20‰) between H2 and the water. The five experiments using pure culture samples from different microorganisms give a mean source signature of δ D = −728‰ (±28‰), and a fractionation constant ϵH2-H2O of −711‰ (±34‰) between H2 and the water. The results confirm the massive deuterium depletion of biologically produced H2 as was predicted by the calculation of the thermodynamic fractionation factors for hydrogen exchange between H2 and water vapour. Systematic errors in the isotope scale are difficult to assess in the absence of international standards for δ D of H2. As expected for a thermodynamic equilibrium, the fractionation factor is temperature dependent, but largely independent of the substrates used and the H2 production conditions. The equilibrium fractionation coefficient is positively correlated with temperature and we measured a rate of change of 2.3‰ / °C between 45 °C and 60 °C, which is in general agreement with the theoretical prediction of 1.4‰ / °C. Our best experimental estimate for ϵH2-H2O at a temperature of 20 °C is −731‰ (±20‰) for biologically produced H2. This value is close to the predicted value of −722‰, and we suggest using these values in future global H2 isotope budget calculations and models with adjusting to regional temperatures for calculating δ D values.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-03
    Description: Microorganisms in groundwater play an important role in aquifer biogeochemical cycles and water quality. However, the mechanisms linking the functional diversity of microbial populations and the groundwater physicochemistry are still not well understood due to the complexity of interactions between surface and subsurface. Here, we used phospholipid fatty acids (PLFAs) relative abundances to link specific biochemical markers within the microbial communities to the spatio-temporal changes of the groundwater physicochemistry. PLFAs were isolated from groundwater of two physicochemically distinct aquifer assemblages in central Germany (Thuringia). The functional diversities of the microbial communities were mainly correlated with groundwater chemistry, including dissolved O2, Fet and NH4+ concentrations. Abundances of PLFAs derived from eukaryotes and potential nitrite oxidizing bacteria (11MeC16:0 as biomarker for Nitrospira moscoviensis) were high at sites with elevated O2 concentration where groundwater recharge supplies both bioavailable organic substrates and NH4+ needed to sustain heterotrophic growth and nitrification processes. In anoxic groundwaters more rich in Fet, PLFAs abundant in sulphate reducing bacteria (SRB), iron-reducing bacteria and fungi increased with Fet and HCO3− concentrations suggesting the occurrence of active iron-reduction and the possible role of fungi in meditating iron solubilisation and transport in those aquifer domains. In NH4+ richer anoxic groundwaters, anammox bacteria and SRB- derived PLFAs increased with NH4+ concentration further evidencing the dependence of the anammox process on ammonium concentration and potential links between SRB and anammox bacteria. Additional support of the PLFA-based bacterial communities was found in DNA and RNA-based Illumina MiSeq amplicon sequencing of bacterial 16S rRNA genes, which evidenced high predominance of nitrite-oxidizing bacteria Nitrospira e.g. Nitrospira moscoviensis in oxic zones of the aquifers and of anammox bacteria in NH4+ richer anoxic groundwater. Higher relative abundances of sequence reads in the RNA-based data sets affiliated with iron-reducing bacteria in Fet richer groundwater supported the occurrence of active dissimilatory iron-reduction. The functional diversity of the microbial communities in these biogeochemically distinct groundwater assemblages can be largely attributed to the redox conditions linked to changes in bioavailable substrates and input of substrates with the seepage. Our results demonstrate the power of complementary information derived from PLFA-based and sequencing-based approaches.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-01-13
    Description: Peatlands play an important role in the global carbon cycle and represent both an important stock of soil carbon and a substantial natural source of relevant greenhouse gases like CO2 and CH4. While it is known that the quality of organic matter affects microbial degradation and mineralization processes in peatlands, the manner in which the quality of peat organic matter affects the formation of CO2 and CH4 remains unclear. In this study we developed a fast and simple peat quality index in order to estimate its potential greenhouse gas formation by linking the thermo-degradability of peat with potential anaerobic CO2 and CH4 formation rates. Peat samples were obtained at several depths (0–40 cm) at four sampling locations from an acidic fen (pH 4.7). CO2 and CH4 formation rates were highly spatially variable and depended on depth, sampling location, and the composition of pyrolysable organic matter. Peat samples active in CO2 and CH4 formation had a quality index above 1.35, and the fraction of thermally labile pyrolyzable organic matter (comparable to easily available carbon substrates for microbial activity) obtained by thermogravimetry was above 35%. Curie-point pyrolysis-gas chromatography/mass spectrometry mainly identified carbohydrates and lignin as pyrolysis products in these samples, indicating that undecomposed organic matter was found in this fraction. In contrast, lipids and unspecific pyrolysis products, which indicate recalcitrant and highly decomposed organic matter, correlated significantly with lower CO2 formation and reduced methanogenesis. Our results suggest that undecomposed organic matter is a prerequisite for CH4 and CO2 development in acidic fens. Furthermore, the new peat quality index should aide the estimation of potential greenhouse gas formation resulting from peatland restoration and permafrost thawing and help yield more robust models of trace gas fluxes from peatlands for climate change research.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-09-03
    Description: Peatlands play an important role in the global carbon cycle and represent both an important stock of soil carbon and a substantial natural source of relevant greenhouse gases like CO2 and CH4. While it is known that the microbial availability of organic matter affects degradation and mineralization processes in peatlands, the manner in which peat organic matter affects the formation of CO2 and CH4 remains unclear. In this study we developed a fast and simple peat quality index in order to estimate its greenhouse gas potential by linking the thermo-degradability of peat with anaerobic CO2 and CH4 formation rates. Peat samples were obtained at several depths (0–40 cm) at four sampling locations from an acidic fen (pH∼4.7). CO2 and CH4 formation rates were highly spatially variable and depended on depth, sampling location, and the composition of pyrolysable organic matter. Peat samples active in CO2 and CH4 formation had a quality index above 1.35, and the fraction of thermally labile pyrolyzable organic matter (comparable to easily available carbon substrates for microbial activity) obtained by thermogravimetry was above 35%. Curie-point pyrolysis-gas chromatography/mass spectrometry mainly identified carbohydrates and lignin as pyrolysis products in these samples, indicating that undecomposed organic matter was found in this fraction. In contrast, lipids and unspecific pyrolysis products, which indicate recalcitrant and highly decomposed organic matter, correlated significantly with lower CO2 formation and reduced methanogenesis. Our results suggest that undecomposed organic matter is a prerequisite for CH4 and CO2 development in acidic fens. Furthermore, the new peat quality index should aide the estimation of greenhouse gas formation potential resulting from peatland restoration and permafrost thawing and help yield more robust models of trace gas fluxes from peatlands for climate change research.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-15
    Description: Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global warming.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...