ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-01
    Description: Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties, and sources are not well understood. Here we show that the concentration of airborne biological particles in a North American forest ecosystem increases significantly during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2–6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including groups containing human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteriaceae, Pseudomonadaceae). In addition to detecting known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN, and rainfall are more tightly coupled than previously assumed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-05-31
    Description: Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-08-02
    Description: We study the interplay of hydrodynamic mesoscale structures and the growth of plankton in the wake of an island, and its interaction with a coastal upwelling. Our focus is on a mechanism for the emergence of localized plankton blooms in vortices. Using a coupled system of a kinematic flow mimicking the mesoscale structures behind the island and a simple three component model for the marine ecosystem, we show that the long residence times of nutrients and plankton in the vicinity of the island and the confinement of plankton within vortices are key factors for the appearance of localized plankton blooms.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-08-27
    Description: Eastern Boundary Upwelling Systems (EBUS) are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge to study this sub- and mesoscale activity in connection with the chlorophyll distribution. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs), and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs, which allow us to divide each areas in two different subsystems. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. We also proposed a ranking of the four EBUS based on the averaged mixing intensity. When investigating the links with chlorophyll concentration, the previous subsystems reveal distinct biological signatures. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean. This study provides new insights for the understanding of the variable biological productivity in the ocean, which results from both dynamics of the marine ecosystem and of the 3-D turbulent medium.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-31
    Description: Coastal transport in the Bay of Palma, a small region in the island of Mallorca, Spain, is characterized in terms of Lagrangian descriptors. The data sets used for this study are the output for two months (one in autumn and one in summer) of a high resolution numerical model, ROMS (Regional Ocean Model System), forced atmospherically and with a spatial resolution of 300 m. The two months were selected because of their different wind regime, which is the main driver of the sea dynamics in this area. Finite-size Lyapunov exponents (FSLEs) were used to locate semi-persistent Lagrangian coherent structures (LCS) and to understand the different flow regimes in the bay. The different wind directions and regularity in the two months have a clear impact on the surface bay dynamics, whereas only topographic features appear clearly in the bottom structures. The fluid interchange between the bay and the open ocean was studied by computing particle trajectories and residence time (RT) maps. The escape rate of particles out of the bay is qualitatively different, with a 32% greater escape rate of particles to the ocean in October than in July, owing to the different geometric characteristics of the flow. We show that LCSs separate regions with different transport properties by displaying spatial distributions of residence times on synoptic Lagrangian maps together with the location of the LCSs. Correlations between the time-dependent behavior of FSLE and RT are also investigated, showing a negative dependence when the stirring characterized by FSLE values moves particles in the direction of escape.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-18
    Description: In the winter-wet, summer-dry forests of the western United States, total annual evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated drainage and storage properties, however, may strongly influence these relationships between climate and ET. We use a physically based process model to evaluate how plant accessible water storage capacity (AWC) and rates of drainage influence model estimates of ET–climate relationships for three snow-dominated, mountainous catchments with differing precipitation regimes. Model estimates show that total annual precipitation is a primary control on inter-annual variation in ET across all catchments and that the timing of recharge is a second-order control. Low AWC, however, increases the sensitivity of annual ET to these climate drivers by 3 to 5 times in our two study basins with drier summers. ET–climate relationships in our Colorado basin receiving summer precipitation are more stable across subsurface drainage and storage characteristics. Climate driver–ET relationships are most sensitive to subsurface storage (AWC) and drainage parameters related to lateral redistribution in the relatively dry Sierra site that receives little summer precipitation. Our results demonstrate that uncertainty in geophysically mediated storage and drainage properties can strongly influence model estimates of watershed-scale ET responses to climate variation and climate change. This sensitivity to uncertainty in geophysical properties is particularly true for sites receiving little summer precipitation. A parallel interpretation of this parameter sensitivity is that spatial variation in storage and drainage properties are likely to lead to substantial within-watershed plot-scale differences in forest water use and drought stress.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-14
    Description: In the winter-wet, summer-dry forests of the western United States, total annual evapotranspiration (ET) varies with precipitation and temperature. Geologically mediated drainage and storage properties, however, may strongly influence these relationships between climate and ET. We use a physically based process model to evaluate how soil available water capacity (AWC) and rates of drainage influence model estimates of ET-climate relationships for three snow-dominated, mountainous catchments with differing precipitation regimes. Model estimates show that total annual precipitation is a primary control on inter-annual variation in ET across all catchments and that the timing of recharge is a second order control. Low soil AWC, however, increases the sensitivity of annual ET to these climate drivers by three to five times in our two study basins with drier summers. ET–climate relationships in our Colorado basin receiving summer precipitation are more stable across subsurface drainage and storage characteristics. Climate driver-ET relationships are most sensitive to soil AWC and soil drainage parameters related to lateral redistribution in the relatively dry Sierra site that receives little summer precipitation. Our results demonstrate that uncertainty in geophysically mediated storage and drainage properties can strongly influence model estimates of watershed scale ET responses to climate variation and climate change. This sensitivity to uncertainty in geophysical properties is particularly true for sites receiving little summer precipitation. A parallel interpretation of this parameter sensitivity is that spatial variation in soil properties are likely to lead to substantial within-watershed plot scale differences in forest water use and drought stress.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-25
    Description: In the winter-wet, summer-dry forests of the western United States (US), total annual evapotranspiration (ET) is largely a function of three separate but interacting properties: (1) climate, especially magnitude of precipitation, its partitioning into rain or snow, and snowmelt timing; (2) soil characteristics, including soil water holding capacity and rates of drainage; and (3) the total biomass where larger, more abundant vegetation is directly proportional to greater ET. Understanding how these controls influence ET in Mediterranean mountain environments is complicated by shifts between water and energy limitations both within the year and between years. We use a physically based process model to evaluate the strength of climate controls and soil properties in predicting ET in three snow-dominated, mountainous catchments in the western US. As we expect, statistical analysis shows that annual precipitation is a primary control of annual ET across all catchments. However, secondary climate controls vary across catchments. Further, the sensitivity of annual ET to precipitation and other climatic controls varies with soil characteristics. In the drier, more snow-dominated catchments ET is also controlled by spring temperature through its influence on the timing of snowmelt and the synchronicity between seasonal water availability and demand. In wetter catchments that receive a large fraction of winter precipitation as rainfall, the sensitivity to ET is also strongly influenced by soil water holding capacity. We show that in all catchments, soil characteristics affect the sensitivity of annual ET to climatic drivers. Estimates of annual ET become more sensitive to climatic drivers at low soil water holding capacities in the catchments with the stronger decoupling between precipitation and growing season demands.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-16
    Description: Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2–6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-02-05
    Description: Green leaf volatiles (GLVs) are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA) formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...