ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-07-07
    Description: We report measurements performed during two complete flow seasons on the Urumqi River, a proglacial mountain stream in the northeastern ank of the Tianshan, an active mountain range in Central Asia. This survey of flow dynamics and sediment transport (dissolved, suspended and bed loads), together with a 25-year record of daily discharge, enables the assessment of secular denudation rates on this high mountain catchment of Central Asia. Our results show that chemical weathering accounts for more than one third of the total denudation rate. Sediment transported as bed load cannot be neglected in the balance given that sand and gravel transport accounts for one third of the solid load of the river. Overall, the mean denudation rates are low, averaging 46 t × km−2 × yr−1 (17–18 m Myr−1). We furthermore analyse the hydrologic record to show that the long-term sediment budget is not dominated by extreme and rare events but by the total amount of rainfall or annual runoff. The rates we obtain are in agreement with rates obtained from the mass balance reconstruction of the Plio-Quaternary gravely deposits of the foreland but signicantly lower than the rates recently obtained from cosmogenic dating of river sand. We show that the resolution of this incompatibility has an important consequence for our understanding of the interplay between erosion and tectonics in the semi-humid ranges of Central Asia.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-13
    Description: We report measurements performed during two complete flow seasons on the Urumqi River, a proglacial mountain stream in the northeastern flank of the Tianshan, an active mountain range in Central Asia. This survey of flow dynamics and sediment transport (dissolved, suspended and bed loads), together with a 25-year record of daily discharge, enables the assessment of secular denudation rates on this high mountain catchment of Central Asia. Our results show that chemical weathering accounts for more than one-third of the total denudation rate. Sediment transported as bed load cannot be neglected in the balance, given that sand and gravel transport accounts for one third of the solid load of the river. Overall, the mean denudation rates are low, averaging 46 t × km−2 × yr−1(17–18 m Myr−1). We furthermore analyse the hydrologic record to show that the long-term sediment budget is not dominated by extreme and rare events but by the total amount of rainfall or annual runoff. The rates we obtain are in agreement with rates obtained from the mass balance reconstruction of the Plio-Quaternary gravely deposits of the foreland but signicantly lower than the rates recently obtained from cosmogenic dating of the Kuitun River sands, west of the Urumqi River. We show that the resolution of this incompatibility may have an important consquence for our understanding of the interplay between erosion and tectonics in the semi-humid ranges of Central Asia.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-03-18
    Description: The "δ11B-pH" technique was applied to modern and ancient Porites from the sub-equatorial Pacific areas (Tahiti and Marquesas) spanning a time interval from 0 to 20 720 calendar years to determine the amplitude of pH changes between the Last Glacial Period and the Holocene. Boron isotopes were measured by Multi-Collector-Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) with an external reproducibility of 0.25‰, allowing a precision of ±0.025 pH-units. The boron concentration [B] and isotopic composition of modern samples indicate that the temperature strongly controls the partition coefficient KD for different aragonite species. Modern coral δ11B values and the reconstructed sea surface pH values for different Pacific areas match the measured pH expressed on the Sea Water Scale and confirm the calculation parameters that were previously determined by laboratory calibration exercises. Most ancient sea surface pH reconstructions near Marquesas are higher than modern values. These values range between 8.20 and 8.26 for the Holocene and reached 8.31 at the end of the last glacial period (20.7 kyr BP). At the end of the Younger Dryas (11.50±0.1 kyr BP), the central sub-equatorial Pacific experienced a dramatic drop of up to 0.2 pH-units from the average pH of 8.2 before and after this short event. Using the CO2SYS program, we recalculated the aqueous pCO2 to be 400±24 ppmV at around 11.5 kyr BP for corals at Marquesas and ~500 ppmV near Tahiti where it was assumed that pCO2 in the atmosphere was 250 ppmV. Throughout the Holocene, the difference in pCO2 between the ocean and the atmosphere at Marquesas (ΔpCO2) indicates that the surface waters behave as a moderate CO2 sink (−67 to −11 ppmV) during El Niño-like conditions. In contrast, during the last glacial/interglacial transition, this area was a moderate source of CO2 (−9 to 56 ppmV) for the atmosphere, highlighting predominant La Niña-like conditions. Such conditions were particularly pronounced at the end of the Younger Dryas with a large amount of CO2 released with ΔpCO2 of +140 ppmV. This last finding provides further evidence of the marked changes to the water mass pH and temperature properties in the equatorial Pacific at the Younger Dryas- Holocene transition and the strong impact of oceanic dynamic on the atmospheric CO2 content.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-18
    Description: In the tropic, the small watersheds are affected by intense meteorological events playing an important role on the erosion of soils and therefore on the associated organic carbon fluxes. We studied the geochemistry of three small watersheds around the Basse-Terre volcanic Island (FWI) during a four years period, by measuring DOC, POC and DIC concentrations. The mean annual yields ranged 8.1–15.8 t C km−2 yr−1, 1.9–8.6 t C km−2 yr−1 and 8.1–25.5 t C km−2 yr−1 for DIC, DOC and POC, respectively. Floods and extreme floods represent 45 to 70 % of the annual DOC flux, and more than 80 % of the annual POC flux. The DIC flux occurs essentially during the low water level, only 43 % of the annual DIC flux is exported during floods. The distribution of the dissolved carbon between the inorganic and the organic fraction is correlated to the hydrodynamic of rivers. During low water level and floods, the dissolved carbon is exported under the inorganic form (DIC/DOC = 2.6 ± 2.1), while during extreme floods, the dissolved carbon transported is mostly organic (DIC/DOC = 0.7 ± 0.2). The residence time of the organic carbon in Guadeloupean soils may vary from 381 to 1000 yr, and is linked to the intensity of meteorological events than the frequency of meteorological events. Looking at the global carbon mass balance, the total export of organic carbon coming from small tropical and volcanic mountainous rivers is estimated about 2.0–8.9 Tg C yr−1 for DOC and about 8.4–26.5 Tg C yr−1 for POC, emphasizing that these carbon fluxes are significant and should be included in global carbon budgets.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-08-16
    Description: The "δ11B-pH" technique was applied to modern and ancient corals Porites from the sub-equatorial Pacific areas (Tahiti and Marquesas) spanning a time interval from 0 to 20.720 calendar years to determine the amplitude of pH changes between the Last Glacial Period and the Holocene. Boron isotopes were measured by Multi-Collector – Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) with an external reproducibility of 0.25‰, allowing a precision of about ±0.03 pH-units for pH values between 8 and 8.3. The boron concentration [B] and isotopic composition of modern samples indicate that the temperature strongly controls the partition coefficient KD for different aragonite species. Modern coral δ11B values and the reconstructed sea surface pH values for different Pacific areas match the measured pH expressed on the seawater scale and confirm the calculation parameters that were previously determined by laboratory calibration exercises. Most ancient sea surface pH reconstructions near Marquesas are higher than modern values. These values range between 8.19 and 8.27 for the Holocene and reached 8.30 at the end of the last glacial period (20.7 kyr BP). At the end of the Younger Dryas (11.50±0.1 kyr BP), the central sub-equatorial Pacific experienced a dramatic drop of up to 0.2 pH-units from the average pH of 8.2 before and after this short event. Using the marine carbonate algorithms, we recalculated the aqueous pCO2 to be 440±25 ppmV at around 11.5 kyr BP for corals at Marquesas and ~500 ppmV near Tahiti where it was assumed that pCO2 in the atmosphere was 250 ppmV. Throughout the Holocene, the difference in pCO2 between the ocean and the atmosphere at Marquesas (ΔpCO2) indicates that the surface waters behave as a moderate CO2 sink or source (−53 to 20 ppmV) during El Niño-like conditions. By contrast, during the last glacial/interglacial transition, this area was a marked source of CO2 (21 to 92 ppmV) for the atmosphere, highlighting predominant La Niña-like conditions. Such conditions were particularly pronounced at the end of the Younger Dryas with a large amount of CO2 released with ΔpCO2 of +185±25 ppmV. This last finding provides further evidence of the marked changes in the surface water pH and temperature in the equatorial Pacific at the Younger Dryas-Holocene transition and the strong impact of oceanic dynamic on the atmospheric CO2 content.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...