ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-06-24
    Description: Variations in the world's ocean heat storage and its associated volume changes are a key factor to gauge global warming and to assess the earth's energy and sea level budget. Estimating global ocean heat content (GOHC) and global steric sea level (GSSL) with temperature/salinity data from the Argo network reveals a positive change of 0.5 ± 0.1 W m−2 (applied to the surface area of the ocean) and 0.5 ± 0.1 mm year−1 during the years 2005 to 2012, averaged between 60° S and 60° N and the 10–1500 m depth layer. In this study, we present an intercomparison of three global ocean observing systems: the Argo network, satellite gravimetry from GRACE and satellite altimetry. Their consistency is investigated from an Argo perspective at global and regional scales during the period 2005–2010. Although we can close the recent global ocean sea level budget within uncertainties, sampling inconsistencies need to be corrected for an accurate global budget due to systematic biases in GOHC and GSSL in the Tropical Ocean. Our findings show that the area around the Tropical Asian Archipelago (TAA) is important to closing the global sea level budget on interannual to decadal timescales, pointing out that the steric estimate from Argo is biased low, as the current mapping methods are insufficient to recover the steric signal in the TAA region. Both the large regional variability and the uncertainties in the current observing system prevent us from extracting indirect information regarding deep-ocean changes. This emphasizes the importance of continuing sustained effort in measuring the deep ocean from ship platforms and by beginning a much needed automated deep-Argo network.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-22
    Description: The sea surface salinity (SSS) measured from space by the Soil Moisture and Ocean Salinity (SMOS) mission has recently been revisited by the European Space Agency first campaign reprocessing. We show that, with respect to the previous version, biases close to land and ice greatly decrease. The accuracy of SMOS SSS averaged over 10 days, 100 × 100 km2 in the open ocean and estimated by comparison to ARGO (Array for Real-Time Geostrophic Oceanography) SSS is on the order of 0.3–0.4 in tropical and subtropical regions and 0.5 in a cold region. The averaged negative SSS bias (−0.1) observed in the tropical Pacific Ocean between 5° N and 15° N, relatively to other regions, is suppressed when SMOS observations concomitant with rain events, as detected from SSM/Is (Special Sensor Microwave Imager) rain rates, are removed from the SMOS–ARGO comparisons. The SMOS freshening is linearly correlated to SSM/Is rain rate with a slope estimated to −0.14 mm−1 h, after correction for rain atmospheric contribution. This tendency is the signature of the temporal SSS variability between the time of SMOS and ARGO measurements linked to rain variability and of the vertical salinity stratification between the first centimeter of the sea surface layer sampled by SMOS and the 5 m depth sampled by ARGO. However, given that the whole set of collocations includes situations with ARGO measurements concomitant with rain events collocated with SMOS measurements under no rain, the mean −0.1 bias and the negative skewness of the statistical distribution of SMOS minus ARGO SSS difference are very likely the mean signature of the vertical salinity stratification. In the future, the analysis of ongoing in situ salinity measurements in the top 50 cm of the sea surface and of Aquarius satellite SSS are expected to provide complementary information about the sea surface salinity stratification.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-25
    Description: Variations in the world's ocean heat storage and its associated volume changes are a key factor to gauge global warming and to assess the Earth's energy budget. It is also directly link to sea level change, which has a direct impact on coastal populations. Understanding and monitoring heat and sea level change is therefore one of the major legacies of current global ocean observing systems. In this study, we present an inter-comparison of the three of these global ocean observing systems: the ocean temperature/salinity network Argo, the gravimeter GRACE and the satellite altimeters. Their consistency is investigated at global and regional scale during the period 2005–2010 of overlapping time window of re-qualified data. These three datasets allow closing the recent global ocean sea level budget within uncertainties. However, sampling inconsistencies need to be corrected for an accurate budget at global scale. The Argo network allows estimating global ocean heat content and global sea level and reveals a positive change of 0.5 ± 0.1W m−2 and 0.5 ± 0.1 mm yr−1 over the last 8 yr (2005–2012). Regional inter-comparison of the global observing systems highlights the importance of specific ocean basins for the global estimates. Specifically, the Indonesian Archipelago appears as a key region for the global ocean variability. Both the large regional variability and the uncertainties in the current observing systems, prevent us to shed light, from the global sea level perspective, on the climatically important deep ocean changes. This emphasises, once more, the importance of continuing sustained effort in measuring the deep ocean from ship platforms and by setting up a much needed automated deep-Argo network.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-18
    Description: The sea surface salinity (SSS) measured from space by the Soil Moisture and Ocean Salinity (SMOS) mission has recently been revisited by the European Space Agency first campaign reprocessing. We show that, with respect to the previous version, biases close to land and ice greatly decrease. The accuracy of SMOS SSS averaged over 10 days 100 × 100 km2 in the open ocean and estimated by comparison to ARGO SSS is on the order of 0.3–0.4 in tropical and subtropical regions and 0.5 in a cold region. The mean SSS −0.1 bias observed in the Tropical Pacific Ocean between 5° N and 15° N, relatively to other regions, is suppressed when SMOS rainy events, as detected on SSMIs rain rates, are removed from the SMOS-ARGO comparisons. The SMOS freshening is linearly correlated to SSMIs rain rate with a slope estimated to −0.14 mm−1 h, after correction for rain atmospheric contribution. This tendency is the signature of the temporal SSS variability between the time of SMOS and ARGO measurements linked to rain variability and of the vertical salinity stratification between the first centimeter of the sea surface layer sampled by SMOS and the 5 m depth sampled by ARGO. However, given that the whole set of collocations includes situations with rainy ARGO measurements collocated with non rainy SMOS measurements, the mean −0.1 bias and the negative skewness of the statistical distribution of SMOS minus ARGO SSS difference are very likely the mean signature of the vertical salinity stratification. In the future, the analysis of ongoing in situ salinity measurements in the top 50 cm of the sea surface and of Aquarius satellite SSS are expected to provide complementary information about the sea surface salinity stratification.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...