ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-10-31
    Description: The paper explores the potential of tsunami generation by pyroclastic flows travelling down the flank of the volcano Vesuvius that is found south of Naples in Italy. The eruption history of Vesuvius shows that it is characterised by large explosive eruptions of plinian or subplinian type during which large volume of pyroclastic flows can be produced. The most remarkable examples of such eruptions occurred in 79 AD and in 1631 and were catastrophic. Presently Vesuvius is in a repose time that, according to volcanologists, could be interrupted by a large eruption, and consequently proper plans of preparedness and emergency management have been devised by civil authorities based on a scenario envisaging a large eruption. Recently, numerical models of magma ascent and of eruptive column formation and collapse have been published for the Vesuvius volcano, and propagation of pyroclastic flows down the slope of the volcanic edifice up to the close shoreline have been computed. These flows can reach the sea in the Gulf of Naples: the denser slow part will enter the waters, while the lighter and faster part of the flow can travel on the water surface exerting a pressure on it. This paper studies the tsunami produced by the pressure pulse associated with the transit of the low-density phase of the pyroclastic flow on the sea surface by means of numerical simulations. The study is divided into two parts. First the hydrodynamic characteristics of the Gulf of Naples as regards the propagation of long waves are analysed by studying the waves radiating from a source that is a static initial depression of the sea level localised within the gulf. Then the tsunami produced by a pressure pulse moving from the Vesuvius toward the open sea is simulated: the forcing pulse features are derived from the recent studies on Vesuvian pyroclastic flows in the literature. The tsunami resulting from the computations is a perturbation involving the whole Gulf of Naples, but it is negligible outside, and persists within the gulf long after the transit of the excitation pulse. The size of the tsunami is modest. The largest calculated oscillations are found along the innermost coasts of the gulf at Naples and at Castellammare. The main conclusion of the study is that the light component of the pyroclastic flows produced by future large eruptions of Vesuvius are not expected to set up catastrophic tsunamis.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-10-31
    Description: Stromboli is one of the most active volcanoes in the Aeolian island arc in south Tyrrhenian sea, Italy. In the last 100 years the most relevant volcanic eruptions have beenaccompanied by local tsunamis, that have caused damage and casualties. In some cases the direct mechanism of local tsunami generation is clear, i.e. pyroclastic flows entering the sea. In some others it is uncertain and some speculation concerning the collapse of the eruptive column on the sea surface or the failure of some underwater mass can be made. But the ordinary activity is unlikely to generate large regional tsunamis. These can be produced by the lateral collapse of the volcanic cone that geomorphological and volcanological  investigations have proven to have occurred repeatedly in the recent history of the volcano, with return period in the order of some thousands of years. The last episode is dated to less than 5 ka BP, and left the Sciara del Fuoco scar on the north-west flank of Stromboli. Based on previous studies, the possible collapse of the nortwestern sector of Stromboli and the consequent generation and propagation of a tsunami are explored. The impact on Stromboli and on the other islands of the Aeolian archipelago is estimated, as well as the impact on the coast of Sicily and the Tyrrhenian coasts of Calabria. The simulation is carried out by means of a double model: a Lagrangian block model to compute the motion of the collapsing mass, and a finite-element hydrodynamic model to compute the evolution of the tsunami. Two distinct tsunami simulations are carried out, one on a very fine grid around the source region to evaluate the tsunami near Stromboli, and one utilising a coarser grid covering the whole south-east Tyrrhenian sea to compute the tsunami propagation toward Sicily and Calabria. It is found that a huge-volume collapse of the north-western flank of the Stromboli cone is capable of producing a regional tsunami which is catastrophic at the source and devastating on long stretches of Tyrrhenian coasts, but particularly in the neighbouring islands of Panarea and Salina, and along the Calabria coasts around Capo Vaticano.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-12-31
    Description: During the last few years, the steady increase in the quantity and quality of the data concerning tsunamis has led to an increasing interest in the inversion problem for tsunami data. This work addresses the usually ill-posed problem of the hydrodynamical inversion of tsunami tide-gage records to infer the initial sea perturbation. We use an inversion method for which the data space consists of a given number of waveforms and the model parameter space is represented by the values of the initial water elevation field at a given number of points. The forward model, i.e. the calculation of the synthetic tide-gage records from an initial water elevation field, is based on the linear shallow water equations and is simply solved by applying the appropriate Green’s functions to the known initial state. The inversion of tide-gage records to determine the initial state results in the least square inversion of a rectangular system of linear equations. When the inversions are unconstrained, we found that in order to attain good results, the dimension of the data space has to be much larger than that of the model space parameter. We also show that a large number of waveforms is not sufficient to ensure a good inversion if the corresponding stations do not have a good azimuthal coverage with respect to source directivity. To improve the inversions we use the available a priori information on the source, generally coming from the inversion of seismological data. In this paper we show how to implement very common information about a tsunamigenic seismic source, i.e. the earthquake source region, as a set of spatial constraints. The results are very satisfactory, since even a rough localisation of the source enables us to invert correctly the initial elevation field.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-27
    Description: Alexandria is the second biggest city in Egypt as regards population, is a key economic area in northern Africa and has a very important tourist activity. Historical catalogues indicate that it was severely affected by a number of tsunami events. In this work we assess the tsunami hazard by running numerical simulations of tsunami impact in Alexandria through the Worst-case Credible Tsunami Scenario Analysis (WCTSA). We identify three main seismic sources: the Western Hellenic Arc (WHA – reference event AD 365, Mw = 8.5), the Eastern Hellenic Arc (EHA – reference event 1303, Mw = 8.0) and the Cyprus Arc (CA – hypothetical scenario earthquake with Mw = 8.0), inferred from the tectonic setting and from historical tsunami catalogues. All numerical simulations are carried out by means of the code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna. Relevant tsunami metrics are computed for each scenario and then used to build aggregated fields such as the maximum flood depth and the maximum inundation area. We find that the case that produces the most relevant flooding in Alexandria is the EHA scenario, with wave heights up to 4 m. The aggregate fields are used for a building vulnerability assessment according to a methodology developed in the frame of the EU-FP6 project SCHEMA and further refined in this study, based on the adoption of a suitable building damage matrix and on water inundation depth. It is found that in the districts of El Dekhila and Al Amriyah, to the south-west of the port of Dekhila over 12 000 buildings could be affected and hundreds of them could incur in consequences ranging from important damage to total collapse. It is also found that in the same districts tsunami inundation covers an area of about 15 km2 resulting in more than 150 000 residents being exposed.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-05-02
    Description: Eastern Sicily is one of the coastal areas most exposed to earthquakes and tsunamis in Italy. The city of Catania that developed between the eastern base of Etna volcano and the Ionian Sea is, together with the neighbour coastal belt, under the strong menace of tsunamis. This paper addresses the estimation of the tsunami hazard for the city of Catania by using the technique of the Worst-case Credible Tsunami Scenario Analysis (WCTSA) and is focused on a target area including the Catania harbour and the beach called La Plaia where many human activities develop and many important structures are present. The aim of the work is to provide a detailed tsunami hazard analysis, firstly by building scenarios that are proposed on the basis of tectonic considerations and of the largest historical events that hit the city in the past, and then by combining all the information deriving from single scenarios into a unique aggregated scenario that can be viewed as the worst virtual scenario. Scenarios have been calculated by means of numerical simulations on computational grids of different resolutions, passing from 3 km on a regional scale to 40 m in the target area. La Plaia beach results to be the area most exposed to tsunami inundation, with inland penetration up to hundreds of meters. The harbour turns out to be more exposed to tsunami waves with low frequencies: in particular, it is found that the major contribution to the hazard in the harbour is due to a tsunami from a remote source, which propagates with much longer periods than tsunamis from local sources. This work has been performed in the framework of the EU-funded project SCHEMA.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-17
    Description: Alexandria is the second biggest city in Egypt with regards to population, is a key economic area in northern Africa and has very important tourist activity. Historical records indicate that it was severely affected by a number of tsunami events. In this work we assess the tsunami hazard by running numerical simulations of tsunami impact in Alexandria through the worst-case credible tsunami scenario analysis (WCTSA). We identify three main seismic sources: the western Hellenic Arc (WHA – reference event AD 365, Mw = 8.5), the eastern Hellenic Arc (EHA – reference event 1303, Mw = 8.0) and the Cyprus Arc (CA – hypothetical scenario earthquake with Mw = 8.0), inferred from the tectonic setting and from historical tsunami catalogues. All numerical simulations are carried out in two sea level conditions (mean sea level and maximum high-tide sea level) by means of the code UBO-TSUFD, developed and maintained by the Tsunami Research Team of the University of Bologna. Relevant tsunami metrics are computed for each scenario and then used to build aggregated fields such as the maximum flood depth and the maximum inundation area. We find that the case that produces the most relevant flooding in Alexandria is the EHA scenario, with wave heights up to 4 m. The aggregate fields are used for a building vulnerability assessment according to a methodology developed in the framework of the EU-FP6 project SCHEMA and further refined in this study, based on the adoption of a suitable building damage matrix and on water inundation depth. It is found that in the districts of El Dekhila and Al Amriyah, to the south-west of the port of Dekhila, over 12 000 (13 400 in the case of maximum high tide) buildings could be affected and hundreds of them could sustain damaging consequences, ranging from critical damage to total collapse. It is also found that in the same districts tsunami inundation covers an area of about 15 km2, resulting in more than 150 000 (165 000 in the case of maximum high tide) residents being exposed.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-07
    Description: South-eastern Sicily has been affected by large historical earthquakes, including the 11 January 1693 earthquake, considered the largest magnitude earthquake in the history of Italy (Mw = 7.4). This earthquake was accompanied by a large tsunami (tsunami magnitude 2.3 in the Murty-Loomis scale adopted in the Italian tsunami catalogue by Tinti et al., 2004), suggesting a source in the near offshore. The fault system of the eastern Sicily slope is characterised by NNW–SSE-trending east-dipping extensional faults active in the Quaternary. The geometry of a fault that appears currently active has been derived from the interpretation of seismic data, and has been used for modelling the tsunamigenic source. Synthetic tide-gauge records from modelling this fault source indicate that the first tsunami wave polarity is negative (sea retreat) in almost all the coastal nodes of eastern Sicily, in agreement with historical observations. The outcomes of the numerical simulations also indicate that the coastal stretch running from Catania to Siracusa suffered the strongest tsunami impact, and that the highest tsunami waves occurred in Augusta, aslo in agreement with the historical accounts. A large-size submarine slide (almost 5 km3) has also been identified along the slope, affecting the footwall of the active fault. Modelling indicates that this slide gives non-negligible tsunami signals along the coast; though not enough to match the historical observations for the 1693 tsunami event. The earthquake alone or a combination of earthquake faulting and slide can possibly account for the large run up waves reported for the 11 January 1693 event.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-10-10
    Description: On 30 December 2002 the coast of the volcanic island of Stromboli, in the Tyrrhenian sea, Italy, was attacked by two tsunamis generated by landslides that took place on the north-west flank of the volcano. The landslides and the tsunamis represented the most impressive and threatening episodes of a strong effusive eruption, started on 28 December from a new vent which opened close to the north-east crater of the volcano. In spite of the intensified monitoring carried out in response to the eruption, the landslides and the ensuing tsunamis were not foreseen, and the available instrumental data are insufficient to allow a precise reconstruction of the sequence of the events. The seismic network recorded two main landslides along the steep slope of Sciara del Fuoco, with onset around 13:15 and 13:23 local time (GMT+1). The tsunamis were the direct consequence of the mass movements. Three main post-event surveys helped make assessment on the wave impact on the coast. In this paper the attention is focussed on the accounts of the eye-witnesses, that help us clarify and understand what happened. People in the source area (Sciara del Fuoco) reported a small-volume subaerial slide taking place first, then a sharp cut forming in the sea water down to the sea floor (about 10–20 m deep) and propagating almost parallel to the coastline, be concomitantly associated with a sea retreat and a subsequent sea advance. It is suggested here that the cut was the effect of a large submarine landslide that detached from very close to the coast and produced the 13:15 signal in the recorded seismograms. The second, mostly subaerial, slump was observed to slide down 7–8 min later and to excite a train of waves some distance offshore. Not all the witnesses realised that two distinct tsunamis occurred. The tsunami period was probably in the order of 100 s, but shorter period crests were seen to travel on the top of the long-period waves by several persons. The duration of each tsunami was appreciated to be around 5–7 min. It is difficult to ascertain which tsunami was the largest, since there is no full agreement among the observers, but certainly by accounts both were characterised by large destructive waves.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...