ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-28
    Description: A case study is presented to determine the source of the energetic electron layer frequently observed along the high-latitude magnetopause. Measurements by the Cluster spacecraft show bursts of field-aligned electrons occurring during time periods with high potential for dayside reconnection. These properties are compared with the expected signatures from several sources including escape from the exterior cusp, acceleration in a reconnection region, and release from the dayside trapping region through reconnection. The observed properties are most consistent with the electrons being released from the magnetosphere due to reconnection. In this model the electrons would flow along the newly reconnected IMF draped along the magnetopause and propagate along the high-latitude magnetopause. These observations demonstrate an active source for populating the energetic particle layer frequently observed along and just outside the high-latitude magnetopause.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-22
    Description: The Imaging Electron Spectrometer (IES) on the Polar satellite has measured the average characteristics of the equatorial electron pitch angle distributions (PADs) in the midnight sector as a function of radial distance out to the 9 RE apogee of the Polar satellite. Depressions in the observed fluxes of electrons occur with pitch angles around 90° in the equatorial zone, while the more field-aligned electrons remain largely unchanged. The orbital precessions of the satellite have allowed much of the inner equatorial magnetosphere to be observed. Statistically, butterfly PADs with different shapes are observed selectively in different regions, which can provide insight to their source and possible history. Electron paths of varied pitch angles were modelled using Runge-Kutta approximations of the Lorentz force in a Tsyganenko (T96) simulated magnetosphere. The resulting drift paths suggest that the process of magnetopause shadowing plays a significant role in the loss of these electrons. Case studies of the drifting patterns of electrons with varied pitch angles were simulated from Polar's orbit when a butterfly PAD was observed on 3 October 2002 at an altitude near 9 RE and on 12 September 2000 at an altitude near 6 RE. These two locations represent regions on each side of the boundary of stable trapping. The modelling effort strongly suggests that magnetopause shadowing does play a significant role in the loss of equatorially drifting electrons from the outer regions of the inner magnetosphere.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-06-30
    Description: New observations of energetic helium ion fluxes in the Earth's radiation belts have been obtained with the CAMMICE/HIT instrument on the ISTP/GGS POLAR spacecraft during the extended geomagnetically low activity period April through October 1996. POLAR executes a high inclination trajectory that crosses over both polar cap regions and passes over the geomagnetic equator in the heart of the radiation belts. The latter attribute makes possible direct observations of nearly the full equatorial helium ion pitch angle distributions in the heart of the Earth's radiation belt region. Additionally, the spacecraft often re-encounters the same geomagnetic flux tube at a substantially off-equatorial location within a few tens of minutes prior to or after the equatorial crossing. This makes both the equatorial pitch angle distribution and an expanded view of the local off-equatorial pitch angle distribution observable. The orbit of POLAR also permitted observations to be made in conjugate magnetic local time sectors over the course of the same day, and this afforded direct comparison of observations on diametrically opposite locations in the Earth's radiation belt region at closely spaced times. Results from four helium ion data channels covering ion kinetic energies from 520 to 8200 KeV show that the distributions display trapped particle characteristics with angular flux peaks for equatorially mirroring particles as one might reasonably expect. However, the helium ion pitch angle distributions generally flattened out for equatorial pitch angles below about 45°. Significant and systematic helium ion anisotropy difference at conjugate magnetic local time were also observed, and we report quiet time azimuthal variations of the anisotropy index.Key words. Magnetospheric physics (energetic particles · trapped; magnetospheric configuration and dynamics; plasmasphere)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-04-30
    Description: The pitch-angle distributions (PAD) of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern), were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-11-30
    Description: The variation of the charge state of iron [Fe] ions is used to trace volume elements of plasma in the solar wind into the magnetosphere and to determine the time scales associated with the entry into and the action of the magnetospheric energization process working on these plasmas. On 2–3 May 1998 the Advanced Composition Explorer (ACE) spacecraft located at the L1 libration point observed a series of changes to the average charge state of the element Fe in the solar wind plasma reflecting variation in the coronal temperature of their original source. Over the period of these two days the average Fe charge state was observed to vary from + 15 to + 6 both at the Polar satellite in the high latitude dayside magnetosphere and at ACE. During a period of southward IMF the observations at Polar inside the magnetosphere of the same Fe charge state were simultaneous with those at ACE delayed by the measured convection speed of the solar wind to the subsolar magnetopause. Comparing the phase space density as a function of energy at both ACE and Polar has indicated that significant energization of the plasma occurred on very rapid time scales. Energization at constant phase space density by a factor of 5 to 10 was observed over a range of energy from a few keV to about 1 MeV. For a detector with a fixed energy threshold in the range from 10 keV to a few hundred keV this observed energization will appear as a factor of ~103 increase in its counting rate. Polar observations of very energetic O+ ions at the same time indicate that this energization process must be occurring in the high latitude cusp region inside the magnetosphere and that it is capable of energizing ionospheric ions at the same time.Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetospheric configuration and dynamics; solar wind-magnetosphere interactions)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-09-15
    Description: Energetic electrons with 90deg pitch angle have been observed in the magnetotail at ~19 RE near local midnight during the recovery phase of a substorm event on 27 August 2001 (Baker et al., 2002). Based on auroral images Baker et al. (2002) placed the substorm expansion phase between ~04:06:16 and ~04:08:19 UT. The electron enhancements perpendicular to the ambient magnetic field occurred while the Cluster spacecraft were on closed field lines in the central plasma sheet approaching the neutral sheet. Magnetic field and energetic particle measurements have been employed from a number of satellites, in order to determine the source and the subsequent appearance of these electrons at the Cluster location. It is found that ~7.5 min after an X-line formation observed by Cluster (Baker et al., 2002) a current disruption event took place inside geosynchronous orbit and subsequently expanded both in local time and tailward, giving rise to field-aligned currents and the formation of a current wedge. A synthesis of tail reconnection and the cross-tail current disruption scenario is proposed for the substorm global initiation process: When a fast flow with northward magnetic field, produced by magnetic reconnection in the midtail, abruptly decelerates at the inner edge of the plasma sheet, it compresses the plasma populations earthward of the front, altering dynamically the Bz magnetic component in the current sheet. This provides the necessary and sufficient conditions for the kinetic cross-field streaming/current (KCSI/CFCI) instability (Lui et al., 1990, 1991) to initiate. As soon as the ionospheric conductance increases over a threshold level, the auroral electrojet is greatly intensified (see Fig. 2 in Baker et al., 2002), which leads to the formation of the substorm current wedge and dipolarization of the magnetic field. This substorm scenario combines the near-Earth neutral line and the current disruption for the initiation of substorms, at least during steady southward IMF. One can conclude the following: The observations suggest that the anisotropic electron increases observed by Cluster are not related to an acceleration mechanism associated with the X-line formation in the midtail, but rather these particles are generated in the dusk magnetospheric sector due to the longitudinal and tailward expansion of a current disruption region and subsequently observed at the Cluster location with no apparent energy dispersion. Keywords. Magnetospheric physics (Magnetotail; Plasma convection; Storms and substorms)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-11-22
    Description: Unusual energetic particle pitch angle distributions (PADs) were observed by the ISEE-1 and 2 satellites at 3 h MLT and a radial distance of about 10–15 RE during the time period of 07:00-14:00 UT on 3 March 1979. The ISEE-1 satellite obtained complete 3-D distributions of energetic proton and electron fluxes as a function of energy, while ISEE-2 was configured to provide higher time resolution but less angular resolution than ISEE-1. The ISEE-1 observed a butterfly PAD (a minimum in the 90° PA particle flux) for a period of about 2 h (10:00–12:00 UT) for the electrons, and 3 h (09:00–12:00 UT) for the protons over an energy range of 22.5–189 keV (E1–E4) for the electrons and 24–142 keV (P1–P4) for the protons. The small pitch angle (15°, 30°) charged particles (electrons and protons) are seen to behave collectively in all four energy ranges. The relative differences in electron fluxes between 15° PA and 90° PA are more significant for higher energy channels during the butterfly PAD period. Three different types of electron PADs (butterfly, isotropic, and peaked-at-90°) were observed at the same location and time as a function of energy for a short period of time before 10:00 UT. Electron butterfly distributions were also observed by the ISEE-2 for about 1.5 h over 28–62 keV (E2–E4), although less well resolved than ISEE-1. Unlike the ISEE-1, no butterfly distributions were resolved in the ISEE-2 proton PADs due to less angular resolution. The measured drift effects by ISEE-1 suggest that the detected protons were much closer to the particle source than the electrons along their trajectories, and thus ruled out a nightside source within 18:00 MLT to 03:00 MLT. Compared to 07:30 UT, the charged particle fluxes measured by ISEE-1 were enhanced by up to three orders of magnitude during the period 08:30–12:00 UT. From 09:10:00 UT to 11:50 UT, the geomagnetic conditions were quiet (AE
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-08-09
    Description: Energetic electrons (E≥30 keV) travelling along and perpendicular to the magnetic field lines have been observed in the magnetotail at L~17:00 and 22:00 MLT during the recovery phase of a storm-time substorm on 7 October 2002. Three-dimensional electron distributions of the full unit sphere obtained from the IES/RAPID sensor system demonstrated a rather complicated and random behavior of the energetic electrons. Occasionally these electrons were appearing to travel parallel, perpendicular, or in both directions, relative to the magnetic field direction, forming in this way bi-directional, perpendicular-peaked, and mixed distributions. The electron enhancements occurred while the Cluster spacecraft were on closed field lines in the central plasma sheet approaching the neutral sheet from the northern tail lobe. Magnetic field and energetic particle measurements have been used from geosynchronous and Cluster satellites, in order to describe the general context of the event and then give a possible interpretation regarding the occurrence of the electron anisotropies observed by the IES/RAPID spectrometer on board Cluster. According to geosynchronous measurements an electron dispersionless ejection is very well correlated with a dipolar re-configuration of the magnetic field. The latter fact supports the idea that electrons and, in general, particle ejections at geosynchronous altitude are directly related to electric fields arising from field dipolarization caused by current disruption. Also, having as a main objective the understanding of the way 3-D electron distributions are formed, we have analyzed electron energy spectra along and perpendicular to the magnetic field direction, demonstrating the fact that the electron population consists of two distinct components acting independently and in a random manner relative to each other. This leads to the conclusion that these two electron populations along and perpendicular to the field are generated at different remote locations at different rates. The main conclusion of the present paper is that the perpendicular-peaked electron enhancements (electrons with pitch angle around 90 degrees, subjected mainly to curvature drift) observed by Cluster are produced in a remote location duskward of the satellite location, due to the longitudinal and tailward expansion of a current disruption region, and subsequently transported to the Cluster location by means of curvature drift. On the other hand, bi-directional electrons (electrons with pitch angle around 0 and 180 degrees, bouncing mainly along the field lines) are believed to be generated in the vicinity of the neutral sheet or around an X-type region, as suggested by a plethora of previous studies. Finally, in the Discussion section, we make an attempt to present in a more thorough way the substorm model developed by Vogiatzis et al. (2005), which is intimately related to the importance of X-line formation for the initiation of a substorm.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-07-03
    Description: Another approach (Multiple Triangulation Analysis, MTA) is presented to determine the orientation of magnetic flux rope, based on 4-point measurements. A 2-D flux rope model is used to examine the accuracy of the MTA technique in a theoretical way. It is found that the precision of the estimated orientation is dependent on both the spacecraft separation and the constellation path relative to the flux rope structure. However, the MTA error range can be shown to be smaller than that of the traditional MVA technique. As an application to real Cluster data, several flux rope events on 26 January 2001 are analyzed using MTA, to obtain their orientations. The results are compared with the ones obtained by several other methods which also yield flux rope orientation. The estimated axis orientations are shown to be fairly close, suggesting the reliability of the MTA method.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-03-26
    Description: The purpose of our study is to investigate the way particles are accelerated up to supra-thermal energies in the cusp diamagnetic cavities. For this reason we have examined a number of Cluster cusp crossings, originally identified by Zhang et al. (2005), for the years 2001 and 2002 using data from RAPID, STAFF, EFW, CIS, PEACE, and FGM experiments. In the present study we focus on two particular cusp crossings on 25 March 2002 and on 10 April 2002 which demonstrate in a clear way the general characteristics of the events in our survey. Both events exhibit very sharp spatial boundaries seen both in CNO (primarily single-charged oxygen of ionospheric origin based on CIS observations) and H+ flux increases within the RAPID energy range with the magnetic field intensity being anti-correlated. Unlike the first event, the second one shows also a moderate electron flux increase. The fact that the duskward electric field Ey has relatively low values
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...