ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-07-11
    Description: The existence of a seasonally varying undercurrent along 8° N off the east coast of Sri Lanka is inferred from Conductivity-Temperature-Depth profiles, Argo floats, glider measurements, and Ocean General Circulation Model outputs. Together, they reveal an undercurrent below 200 m that is approximately 140 km wide and can reach a maximum speed of 45 cm s−1 that hitherto has not been observed. The undercurrent, flowing in the opposite direction to the surface current, is most pronounced during boreal spring and summer and switches direction between these two seasons. The undercurrent transports relatively fresh water southward during spring, while it advects more saline water northward along the east coast of Sri Lanka during summer. This suggests a pathway, independent of the surface circulation, whereby freshwater is removed and saline water is injected into the Bay of Bengal.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-09
    Description: This study presents the improvement in the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near real-time sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System – ACNFS) went into operations with a horizontal resolution of ~3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements to both of the Navy's sea ice forecasting systems.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-31
    Description: This study presents the improvement in ice edge error within the US Navy's operational sea ice forecast systems gained by assimilating high horizontal resolution satellite-derived ice concentration products. Since the late 1980's, the ice forecast systems have assimilated near real-time sea ice concentration derived from the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMI and then SSMIS). The resolution of the satellite-derived product was approximately the same as the previous operational ice forecast system (25 km). As the sea ice forecast model resolution increased over time, the need for higher horizontal resolution observational data grew. In 2013, a new Navy sea ice forecast system (Arctic Cap Nowcast/Forecast System – ACNFS) went into operations with a horizontal resolution of ~ 3.5 km at the North Pole. A method of blending ice concentration observations from the Advanced Microwave Scanning Radiometer (AMSR2) along with a sea ice mask produced by the National Ice Center (NIC) has been developed, resulting in an ice concentration product with very high spatial resolution. In this study, ACNFS was initialized with this newly developed high resolution blended ice concentration product. The daily ice edge locations from model hindcast simulations were compared against independent observed ice edge locations. ACNFS initialized using the high resolution blended ice concentration data product decreased predicted ice edge location error compared to the operational system that only assimilated SSMIS data. A second evaluation assimilating the new blended sea ice concentration product into the pre-operational Navy Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product alone. This paper describes the technique used to create the blended sea ice concentration product and the significant improvements in ice edge forecasting in both of the Navy's sea ice forecasting systems.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-06
    Description: In the context of the French research project CHACCRA (Climate and Human-induced Alterations in Carbon Cycling at the River–seA connection), living (rose Bengal-stained) benthic foraminifera were investigated at two stations (24 and 67 m depth) in the Rhône prodelta (NW Mediterranean, Gulf of Lions). The aim of this study was to precise the response of benthic foraminiferal faunas to temporal changes of the Rhône River inputs (e.g. organic and terrigeneous material). Each site was sampled in April 2007, September 2007, May 2008 and December 2008, permitting to observe foraminiferal faunas of the 63–150 and 〉150 μm size fractions under a wide range of environmental conditions. Obvious variations in foraminiferal faunal composition were observed during the four investigated periods at the shallowest Station A located in the close vicinity of the Rhône River mouth. Different colonisation stages were observed after major Rhône River flood events, foraminiferal faunas responding with an opportunistic strategy few days to weeks after the creation of a peculiar sedimentary environment (Leptohalysis scottii, May 2008) or high amounts of organic matter supplied by a river flood (Ammonia tepida, December 2008). Under more stable conditions, relatively diverse and equilibrated faunas grew in the sediments. Species benefited from noticeable input of riverine phytodetritus to the sediment during spring bloom conditions (April 2007; e.g. Bolivina dilatata, Nonionella stella, Stainforthia fusiformis), or high amounts of still bio-available organic matter under more oligotrophic conditions (September 2007; e.g. Ammonia tepida, Psammosphaera fusca). The reduced influence of the Rhône River input at the farther Station N led to less contrasted environmental conditions during the four sampling periods, and so to less obvious variations in foraminiferal faunal composition. During reduced riverine influence (i.e. low Rhône discharge), species able to feed on fresh phytodetritus (e.g. Clavulina cylindrica, Hopkinsina atlantica, Nonionella iridea and Nonionella turgida) benefited from eutrophic conditions of the spring bloom (April 2007, May 2008). Conversely, the occurrence of Nouria polymorphinoides under oligotrophic conditions (September 2007, December 2008) was indicative of a benthic environment potentially disturbed by bottom currents. This study put into evidence the extremely rapid response of benthic foraminiferal faunas to strong variations in environmental conditions, especially close to the river mouth (Station A), response noticeably reduced farther from the mouth (Station N) due to a weaker impact of riverine input.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-10
    Description: Anoxia has been successfully induced in four benthic chambers installed on the Northern Adriatic seafloor from 1 week to 10 months. To accurately determine whether benthic foraminifera can survive experimentally induced prolonged anoxia, the CellTrackerGreen method has been applied. Numerous individuals have been found living at all sampling times and at all sampling depths, showing that benthic foraminifera can survive up to 10 months of anoxia with co-occurring hydrogen sulphides. However, foraminiferal standing stocks decrease with sampling time in an irregular way. A large difference in standing stock between two cores samples in initial conditions indicates the presence of a large spatial heterogeneity of the foraminiferal faunas. An unexpected increase in standing stocks after 1 month is tentatively interpreted as a reaction to increased food availability due to the massive mortality of infaunal macrofaunal organisms. After this, standing stocks decrease again in a core sampled after 2 months of anoxia, to attain a minimum in the cores sampled after 10 months. We speculate that the trend of overall decrease of standing stocks is not due to the adverse effects of anoxia and hydrogen sulphides, but rather due to a continuous diminution of labile organic matter.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-19
    Description: Long term experimental studies suggest that, under anoxic transient conditions, redox fronts within the sediment shift upwards causing sequential rise and fall of benthic fluxes of reduced species (Mn(II), Fe(II) than S(−II)). Infaunal benthic organisms are associated to different redox fronts as micro-habitats and must be affected by such changes during natural hypoxia events. In order to document geochemical evolution of the sediment during prolonged anoxia in a realistic system, benthic chambers were deployed on the seafloor of the Northern Adriatic and sampled after 9, 30 and 315 days of incubation. Oxygen and sulfide were measured continuously in the early stages of the experiment (during 9 days). High-resolution porewater profiles were sampled by DET probes and redox sensitive species were analysed (alkalinity, SO42–, Mn2+, Fe2+). After 7 days, anoxia was reached within the chambers. Mn and Fe started diffusing towards the water column giving a rusty color to the seafloor. Infaunal species appeared at the surface. After 20 days, all macro-organisms were dead. Macro-organisms decomposition laying on the seafloor generated important production of sulfides within the chamber generating a downward flux of sulfide towards the sediment where sulfides were quickly oxidized by metallic oxides or precipitated as FeS. Sulfide was no more detectable in the water column and porewaters at the end of the experiment. Therefore, our results suggest that sulfide enrichment in the water column in coastal systems is strongly controlled by the biomass of benthic macrofauna and its decay during hypoxia while its residence time in water column is controlled by iron content (as solid oxides or as dissolved reduced cation) within the sediment, even without water circulation.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-07-15
    Description: Sequential nutrient regeneration and organic matter (OM) degradation in surface sediments of the Gulf of Trieste (northern Adriatic Sea) were examined using in situ benthic chambers under normoxic, anoxic and reoxic conditions. Intensive NH4+ and PO4− anoxic regeneration was subsequently slower in prolonged anoxia. NH4+ production was probably also a consequence of dissimilatory nitrate reduction to NH4+. The presence of anammox and laterally pumping of oxygenated water by benthic infauna explained the presence of NO3− in anoxia. Anoxic phases were characterized by enhanced dissolution of Sibiog, decreasing pore water Ca and Mg concentrations indicating carbonate precipitation and higher Fe and Mn concentrations as a result of reduction/respiration. Reoxygenation was characterized by enhanced bioturbation. Nitrification caused NH4+ decrease and P precipitated quickly as carbonate fluorapatite and FePO4. In addition adsorption of P onto Fe-hydroxides could also occur since Fe (and Mn) reoxidized quickly. Increased Ca levels suggested enhanced carbonate dissolution. Diffusive fluxes at the sediment–water interface (SWI), calculated from pore water modelling using diffusion-reaction model, revealed high anoxic NH4+ effluxes and Ca (and Mg) influxes. PO4− fluxes were very low and high NH4+/PO4− flux ratios in anoxic and reoxic phases suggested an excess of benthic inorganic N. Nutrient budgets at the SWI showed intensive anoxic recycling of inorganic N but low P and Si cycling in all redox phases.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-01-19
    Description: In-situ oxygen microprofiles, sediment organic carbon content and pore-water concentrations of nitrate, ammonium, iron, manganese and sulfides obtained in sediments from the Rhône River prodelta and its adjacent continental shelf were used to constrain a numerical diagenetic model. Results showed that (1) organic matter from the Rhône River is composed of a fraction of fresh material associated to high first-order degradation rate constants (11–33 yr−1), (2) burial efficiency (burial/input ratio) in the Rhône prodelta (within 3 km of the river outlet) can be up to 80%, and decreases to ~20% on the adjacent continental shelf 10–15 km further offshore (3) there is a large contribution of anoxic processes to total mineralization in sediments near the river mouth, certainly due to large inputs of fresh organic material combined with high sedimentation rates, (4) diagenetic by-products originally produced during anoxic organic matter mineralization are almost entirely precipitated (〉97%) and buried in the sediment, which leads to (5) a low contribution of the re-oxidation of reduced products to total oxygen consumption. Consequently, total carbon mineralization rates as based on oxygen consumption rates and using Redfield stoichiometry can be largely underestimated in such River Ocean dominated Margins (RiOMar) environments.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-19
    Description: Anoxia was successfully induced in four benthic chambers installed at 24 m depth in the northern Adriatic Sea, for periods varying from 9 days to 10 months. During the 10 months period, species richness significantly decreased. Although no significant change in Shannon diversity and Evenness is observed, the composition of the foraminiferal assemblages changes with time. This change is due to interspecific differences in tolerance with respect to anoxia and free sulphides. Leptohalysis scottii, Textularia agglutinans and Quinqueloculina cf. stelligera all showed a significant decrease with time, strongly suggesting they are sensitive to the anoxia and sulphides. Conversely, Eggerella scabra, Bulimina marginata, Lagenammina atlantica, Hopkinsina pacifica and Bolivina pseudoplicata appear to be resistant to the experimental conditions. Quinqueloculina seminula also appears to be sensitive to anoxia but shows a clear standing stock increase during the first month of the experiment, which we interpret as an opportunistic response to increasing organic matter availability due to the degradation of the dead macrofaunal organisms. It appears that none of the anoxia sensitive species is capable to accumulate intracellular nitrates. Such a capacity could be shown for some tested specimens of the dominant anoxia tolerant species E. scabra and B. marginata. However, tests on the denitrification capacity of these taxa yielded negative results, suggesting that their resistance to long-term anoxia is not due to a capacity to denitrify.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-25
    Description: Benthic foraminiferal tests are widely used for paleoceanographic reconstructions. There is ample evidence that foraminifera can live in anoxic sediments. For some species, this is explained by a switch to facultative anaerobic metabolism (i.e. denitrification). Here we show for the first time that adult specimens of three benthic foraminiferal species are not only able to survive but are also able to calcify in anoxic conditions, at various depths in the sediment, with and without nitrates. This demonstrates ongoing metabolic processes, even in micro-environments where denitrification is not possible. Earlier observations suggest that the disappearance of foraminiferal communities after prolonged anoxia is not due to instantaneous or strongly increased adult mortality. Here we show that it cannot be explained by an inhibition of growth through chamber addition either. Our observations of ongoing calcification under anoxic conditions means that geochemical proxy data obtained from benthic foraminifera in settings experiencing intermittent anoxia have to be reconsidered. The analysis of whole single specimens or of their successive chambers may provide essential information about short-term environmental variability and/or the causes of anoxia.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...