ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-30
    Description: This study investigates the impact of the assimilation of total lightning data on the precipitation forecast of a numerical weather prediction (NWP) model. The impact of the lightning data assimilation, which uses water vapour substitution, is investigated at different forecast time ranges, namely 3, 6, 12, and 24 h, to determine how long and to what extent the assimilation affects the precipitation forecast of long lasting rainfall events (〉 24 h). The methodology developed in a previous study is slightly modified here, and is applied to twenty case studies occurred over Italy by a mesoscale model run at convection-permitting horizontal resolution (4 km). The performance is quantified by dichotomous statistical scores computed using a dense raingauge network over Italy. Results show the important impact of the lightning assimilation on the precipitation forecast, especially for the 3 and 6 h forecast. The probability of detection (POD), for example, increases by 10 % for the 3 h forecast using the assimilation of lightning data compared to the simulation without lightning assimilation for all precipitation thresholds considered. The Equitable Threat Score (ETS) is also improved by the lightning assimilation, especially for thresholds below 40 mm day−1. Results show that the forecast time range is very important because the performance decreases steadily and substantially with the forecast time. The POD, for example, is improved by 1–2 % for the 24 h forecast using lightning data assimilation compared to 10 % of the 3 h forecast. The impact of the false alarms on the model performance is also evidenced by this study.
    Print ISSN: 1992-0628
    Electronic ISSN: 1992-0636
    Topics: Natural Sciences in General
    Published by Copernicus on behalf of European Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-18
    Description: Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-27
    Description: In this paper, we evaluate the performance of two global horizontal solar irradiance (GHI) estimates, one derived from Meteosat Second Generation (MSG) and another from the 1-day forecast of the Regional Atmospheric Modeling System (RAMS) mesoscale model. The horizontal resolution of the MSG-GHI is 3 × 5 km2 over Italy, which is the focus area of this study. For this paper, RAMS has the horizontal resolution of 4 km.The performances of the MSG-GHI estimate and RAMS-GHI 1-day forecast are evaluated for 1 year (1 June 2013–31 May 2014) against data of 12 ground-based pyranometers over Italy spanning a range of climatic conditions, i.e. from maritime Mediterranean to Alpine climate.Statistics for hourly GHI and daily integrated GHI are presented for the four seasons and the whole year for all the measurement sites. Different sky conditions are considered in the analysisResults for hourly data show an evident dependence on the sky conditions, with the root mean square error (RMSE) increasing from clear to cloudy conditions. The RMSE is substantially higher for Alpine stations in all the seasons, mainly because of the increase of the cloud coverage for these stations, which is not well represented at the satellite and model resolutions. Considering the yearly statistics computed from hourly data for the RAMS model, the RMSE ranges from 152 W m−2 (31 %) obtained for Cozzo Spadaro, a maritime station, to 287 W m−2 (82 %) for Aosta, an Alpine site. Considering the yearly statistics computed from hourly data for MSG-GHI, the minimum RMSE is for Cozzo Spadaro (71 W m−2, 14 %), while the maximum is for Aosta (181 W m−2, 51 %). The mean bias error (MBE) shows the tendency of RAMS to over-forecast the GHI, while no specific behaviour is found for MSG-GHI.Results for daily integrated GHI show a lower RMSE compared to hourly GHI evaluation for both RAMS-GHI 1-day forecast and MSG-GHI estimate. Considering the yearly evaluation, the RMSE of daily integrated GHI is at least 9 % lower (in percentage units, from 31 to 22 % for RAMS in Cozzo Spadaro) than the RMSE computed for hourly data for each station. A partial compensation of underestimation and overestimation of the GHI contributes to the RMSE reduction. Furthermore, a post-processing technique, namely model output statistics (MOS), is applied to improve the GHI forecast at hourly and daily temporal scales. The application of MOS shows an improvement of RAMS-GHI forecast, which depends on the site considered, while the impact of MOS on MSG-GHI RMSE is small.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-01-09
    Description: The estimation of the precipitable water vapour content (W) with high temporal and spatial resolution is of great interest to both meteorological and climatological studies. Several methodologies based on remote sensing techniques have been recently developed in order to obtain accurate and frequent measurements of this atmospheric parameter. Among them, the relative low cost and easy deployment of sun–sky radiometers, or sun photometers, operating in several international networks, allowed the development of automatic estimations of W from these instruments with high temporal resolution. However, the great problem of this methodology is the estimation of the sun-photometric calibration parameters. The objective of this paper is to validate a new methodology based on the hypothesis that the calibration parameters characterizing the atmospheric transmittance at 940 nm are dependent on vertical profiles of temperature, air pressure and moisture typical of each measurement site. To obtain the calibration parameters some simultaneously seasonal measurements of W, from independent sources, taken over a large range of solar zenith angle and covering a wide range of W, are needed. In this work yearly GNSS/GPS datasets were used for obtaining a table of photometric calibration constants and the methodology was applied and validated in three European ESR-SKYNET network sites, characterized by different atmospheric and climatic conditions: Rome, Valencia and Aosta. Results were validated against the GNSS/GPS and AErosol RObotic NETwork (AERONET) W estimations. In both the validations the agreement was very high, with a percentage RMSD of about 6, 13 and 8 % in the case of GPS intercomparison at Rome, Aosta and Valencia, respectively, and of 8 % in the case of AERONET comparison in Valencia. Analysing the results by W classes, the present methodology was found to clearly improve W estimation at low W content when compared against AERONET in terms of % bias, bringing the agreement with the GPS (considered the reference one) from a % bias of 5.76 to 0.52.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-23
    Description: In this paper, we study the impact of lightning and radar reflectivity factor data assimilation on the precipitation VSF (very short-term forecast, 3 h in this study) for two severe weather events that occurred in Italy. The first case refers to a moderate and localized rainfall over central Italy that occurred on 16 September 2017. The second case occurred on 9 and 10 September 2017 and was very intense and caused damages in several geographical areas, especially in Livorno (Tuscany) where nine people died. The first case study was missed by several operational forecasts, including that performed by the model used in this paper, while the Livorno case was partially predicted by operational models. We use the RAMS@ISAC model (Regional Atmospheric Modelling System at Institute for Atmospheric Sciences and Climate of the Italian National Research Council), whose 3D-Var extension to the assimilation of radar reflectivity factor is shown in this paper for the first time. Results for the two cases show that the assimilation of lightning and radar reflectivity factor, especially when used together, have a significant and positive impact on the precipitation forecast. For specific time intervals, the data assimilation is of practical importance for civil protection purposes because it changes a missed forecast of intense precipitation (≥40 mm in 3 h) to a correct one. While there is an improvement of the rainfall VSF thanks to the lightning and radar reflectivity factor data assimilation, its usefulness is partially reduced by the increase in false alarms, especially when both datasets are assimilated.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-23
    Description: In this paper, we evaluate the performance of two Global Horizontal solar Irradiance (GHI) estimates, one derived from Meteosat Second Generation (MSG) and another from one-day forecast of the Regional Atmospheric Modeling System (RAMS) mesoscale model. The horizontal resolution of the MSG-GHI is 3*5 km2 over Italy, which is the focus area of this study. For this paper, RAMS has the horizontal resolution of 4 km. The performance of MSG-GHI estimate and RAMS-GHI one-day forecast are evaluated for one year (1 June 2013–31 May 2014) against data of twelve ground based pyranometers over Italy spanning a range of climatic conditions, i.e. from maritime Mediterranean to Alpine climate. Statistics on hourly GHI and daily integrated GHI are presented for the four seasons and the whole year for all the measurement sites. Different sky conditions are considered in the analysis. Results on hourly data show an evident dependence on the sky conditions, with the Root Mean Square Error (RMSE) increasing from clear to contaminated, and to overcast conditions. The RMSE increases substantially for Alpine stations in all the seasons, mainly because of the increase of the cloud coverage for these stations, which is not well represented at the satellite and model resolutions. Considering the yearly statistics for the RAMS model, the RMSE ranges from 152 W/m2 (31 %) obtained for Cozzo Spadaro, a maritime station, to 287 W/m2 (82 %) for Aosta, an Alpine site. Considering the yearly statistics for MSG-GHI, the minimum RMSE is for Cozzo Spadaro (71 W/m2 , 14 %), while the maximum is for Aosta (181 W/m2 , 51 %). The Mean Bias Error (MBE) shows the tendency of RAMS to over forecast the GHI, while no specific tendency if found for MSG-GHI. Results for daily integrated GHI show a reduction of the RMSE of at least 10 %, compared to hourly GHI evaluation, for both RAMS-GHI one-day forecast and MSG-GHI estimate. A partial compensation of underestimation and overestimation of the GHI contributes to the RMSE reduction. Furthermore, a post-processing technique, namely Model Output Statistics (MOS), is applied to hourly and daily integrated GHI. The application of MOS shows an improvement for RAMS-GHI up to 24 %, depending on the site considered, while the impact of MOS on MSG-GHI RMSE is small (2–3 %).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-09-13
    Description: The estimation of the precipitable water vapor content (W) with high temporal and spatial resolution is of great interest in both meteorological and climatological studies. Several methodologies based on remote sensing techniques have been recently developed, in order to obtain accurate and frequent measurements of this atmospheric parameter. Among them, the relative low cost and easy deployment of sun-sky radiometers, or sun-photometers, operating in several international networks, allowed the development of automatic estimations of W from these instruments with high temporal resolution. However the great problem of this methodology is the estimation of the sun-photometric calibration parameters. The objective of this paper is to validate a new methodology based on the hypothesis that the calibration parameters characterizing the atmospheric transmittance at 940 nm are dependent on vertical profiles of temperature, air pressure and moisture typical of each measurement site. To obtain the calibration parameters some simultaneously seasonal independent measurements of W taken over a large range of solar zenith angle and covering a wide range of W, are needed. In this work yearly GNSS/GPS dataset were used for obtaining a table of photometric calibration constants and the methodology was applied and validated in three European ESR-SKYNET network sites, characterized by different atmospheric and climatic conditions: Rome, Valencia and Aosta. Results were validated against the GNSS/GPS and AErosol Robotic NETwork (AERONET) W estimations. In both the validations the agreement was very high with a percentage RMSD of about 6 %, 13 % and 8 % in the case of GPS intercomparison at Rome, Aosta and Valencia, respectively, and of 8 % in the case of AERONET comparison in Valencia. Analysing the results by W classes, the present methodology was found to clearly improve W estimation at low W content when compared against AERONET in term of %Bias, bringing the agreement with the GPS (considered the reference one), from a %Bias of 5.76 to 0.52.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-14
    Description: The objective of this paper is to describe the development and evaluate the performance of a completely new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2), an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track Advanced Technology Microwave Sounder (ATMS) radiometer measurements. This algorithm, developed within the EUMETSAT H-SAF program, represents an evolution of the previous version (PNPR v1), developed for AMSU/MHS radiometers (and used and distributed operationally within H-SAF), with improvements aimed at exploiting the new precipitation-sensing capabilities of ATMS with respect to AMSU/MHS. In the design of the neural network the new ATMS channels compared to AMSU/MHS, and their combinations, including the brightness temperature differences in the water vapor absorption band, around 183 GHz, are considered. The algorithm is based on a single neural network, for all types of surface background, trained using a large database based on 94 cloud-resolving model simulations over the European and the African areas. The performance of PNPR v2 has been evaluated through an intercomparison of the instantaneous precipitation estimates with co-located estimates from the TRMM Precipitation Radar (TRMM-PR) and from the GPM Core Observatory Ku-band Precipitation Radar (GPM-KuPR). In the comparison with TRMM-PR, over the African area the statistical analysis was carried out for a 2-year (2013–2014) dataset of coincident observations over a regular grid at 0.5°  ×  0.5° resolution. The results have shown a good agreement between PNPR v2 and TRMM-PR for the different surface types. The correlation coefficient (CC) was equal to 0.69 over ocean and 0.71 over vegetated land (lower values were obtained over arid land and coast), and the root mean squared error (RMSE) was equal to 1.30 mm h−1 over ocean and 1.11 mm h−1 over vegetated land. The results showed a slight tendency to underestimate moderate to high precipitation, mostly over land, and overestimate moderate to light precipitation over ocean. Similar results were obtained for the comparison with GPM-KuPR over the European area (15 months, from March 2014 to May 2015 of coincident overpasses) with slightly lower CC (0.59 over vegetated land and 0.57 over ocean) and RMSE (0.82 mm h−1 over vegetated land and 0.71 mm h−1 over ocean), confirming a good agreement also between PNPR v2 and GPM-KuPR. The performance of PNPR v2 over the African area was also compared to that of PNPR v1. PNPR v2 has higher R over the different surfaces, with generally better estimation of low precipitation, mostly over ocean, thanks to improvements in the design of the neural network and also to the improved capabilities of ATMS compared to AMSU/MHS. Both versions of PNPR algorithm have shown a general consistency with the TRMM-PR.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-23
    Description: This study shows the application of a total lightning data assimilation technique to the RAMS (Regional Atmospheric Modeling System) forecast. The method, which can be used at high horizontal resolution, helps to initiate convection whenever flashes are observed by adding water vapour to the model grid column. The water vapour is added as a function of the flash rate, local temperature, and graupel mixing ratio. The methodology is set up to improve the short-term (3 h) precipitation forecast and can be used in real-time forecasting applications. However, results are also presented for the daily precipitation for comparison with other studies. The methodology is applied to 20 cases that occurred in fall 2012, which were characterized by widespread convection and lightning activity. For these cases a detailed dataset of hourly precipitation containing thousands of rain gauges over Italy, which is the target area of this study, is available through the HyMeX (HYdrological cycle in the Mediterranean Experiment) initiative. This dataset gives the unique opportunity to verify the precipitation forecast at the short range (3 h) and over a wide area (Italy). Results for the 27 October case study show how the methodology works and its positive impact on the 3 h precipitation forecast. In particular, the model represents better convection over the sea using the lightning data assimilation and, when convection is advected over the land, the precipitation forecast improves over the land. It is also shown that the precise location of convection by lightning data assimilation improves the precipitation forecast at fine scales (meso-β). The application of the methodology to 20 cases gives a statistically robust evaluation of the impact of the total lightning data assimilation on the model performance. Results show an improvement of all statistical scores, with the exception of the bias. The probability of detection (POD) increases by 3–5 % for the 3 h forecast and by more than 5 % for daily precipitation, depending on the precipitation threshold considered. Score differences between simulations with or without data assimilation are significant at 95 % level for most scores and thresholds considered, showing the positive and statistically robust impact of the lightning data assimilation on the precipitation forecast.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-11-23
    Description: In this paper, we study the impact of lightning and radar reflectivity factor data assimilation on the precipitation VSF (Very Short-term Forecast, 3 hours in this study) for two relevant case studies occurred over Italy. The first case refers to a moderate localised rainfall over Central Italy happened on 16 September 2017. The second case, occurred on 09 and 10 September 2017, was very intense and caused damages in several parts of Italy, while nine people died around Livorno, in Tuscany. The first case study was missed by most operational forecasts over Italy, including that performed by the model used in this paper, while the Livorno case was partially predicted by operational models. We use the RAMS@ISAC model (Regional Atmospheric Modelling System at Institute for Atmospheric Sciences and Climate of the Italian National Research Council), whose 3D-Var extension to the assimilation of RADAR reflectivity factor is shown in this paper. Results for the two cases show that the assimilation of lightning and radar reflectivity factor, especially when used together, have a significant and positive impact on the precipitation forecast. The improvement compared to the control model, not assimilating lightning and radar reflectivity factor, is systematic because occurs for all the Very Short-term Forecast (VSF, 3h) of the events considered. For specific time intervals, the data assimilation is of practical importance for Civil Protection purposes because it transforms a missed forecast of intense precipitation (〉 40 mm/3h) in a correct forecast. While there is an improvement of the rainfall VSF thanks to the lightning and radar reflectivity factor data assimilation, its impact is reduced by the increase of the false alarms in the forecast assimilating both types of data.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...