ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-07
    Description: Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV), in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1) compared to low-speed solar wind (VSW=100–400 km s−1). These results have important implications for understanding (a) how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b) if the magnetotail is a source or a sink for the outer electron radiation belt.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-06-03
    Description: The dayside high-latitude trough is a persistent feature of the post-noon wintertime auroral ionosphere. Radio tomography observations have been used to map its location and latitudinal structure under quiet geomagnetic conditions (Kp≤2) near winter solstice. The trough is also a clear feature in the ion density distribution of the Coupled Thermosphere-Ionosphere-Plasmasphere model (CTIP) under similar geophysical conditions. Comparisons of the measured and modelled distributions show that the plasma production equatorward of the trough is mainly controlled by solar radiation, but there are also other processes maintaining the equatorward trough-wall that are open to debate. The poleward trough-wall is produced by particle precipitation, but the densities are significantly overestimated by the model. At the trough minimum the observed densities are consistent with low nighttime densities convecting sunward to displace the higher daytime densities, but this is not borne out by the CTIP model. The study shows the potential of combining radio tomography and modelling to interpret the balance of the physical processes responsible for large-scale structuring of the high-latitude ionosphere, and highlights the role of tomographic imaging in validating and developing physical models.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-11-30
    Description: Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15° latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.Key words: Ionosphere (equatorial ionosphere; ionosphere-atmosphere interactions)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-10-14
    Description: We report on the occurrence of dense plasma access to geosynchronous orbit. We performed a superposed epoch analysis of 1464 events of dense (〉2 cm–3 at onset) plasma observed by the MPA instruments on board the Los Alamos satellites, for the period 1990–2002. The results allow us to study the temporal evolution of various plasma parameters as a function of local time. We show that dense plasma access to geosynchronous orbit mostly occurs near local midnight. This dense plasma population is shown to be freshly injected from the mid-tail region, colder than the typical plasma sheet and composed of a relatively small O+ component. This population is thus probably the result of a cold, dense plasma sheet (CDPS) injection from the mid-tail region. Cold and dense ion populations are also observed on the dawnside of geosynchronous orbit at a similar epoch time. However, we demonstrate that this latter population is not the result of the dawnward transport of the population detected near midnight. The properties of this ion population may arise from the contribution of both ionospheric upflows and precipitating plasma sheet material. The correlation of an enhanced Kp index with the arrival of the CDPS at geosynchronous orbit shows that the inward transport of this population is allowed by an enhanced magnetospheric convection. Surprisingly, this dense plasma does not, in general, lead to a stronger Dst (ring current strength) within the 12 h following the CDPS injection. It is noted, however, that the superposed Kp index returns to relatively low values soon after the arrival of the CDPS. This may suggest that the dense plasma is, given the average of the 1464 events of this study, only transiting through geosynchronous orbit without accessing the inner regions and, therefore, does not contribute to the ring current. Keywords. Magnetospheric physics (Plasma convection; Plasma sheet) – Space plasma physics (Transport processes)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-04-30
    Description: Observations made by the DMSP F10 satellite during the recovery phase from geomagnetic disturbances in June 1991 show regions of He+ dominance around 830 km altitude at 09:00 MLT. These regions are co-located with a trough in ionisation observed around 55° in the winter hemisphere. Plasma temperature and concentration observations made during the severe geomagnetic storm of 24 March 1991 are used as a case study to determine the effects of geomagnetic disturbances along the orbit of the F10 satellite. Previous explanations for He+ dominance in this trough region relate to the part of the respective flux tubes that is in darkness. Such conditions are not relevant for this study, since the whole of the respective flux tubes are sunlit. A new mechanism is proposed to explain the He+ dominance in the trough region. This mechanism is based on plasma transport and chemical reaction effects in the F-region and topside ionosphere, and on the time scales for such chemical reactions. Flux tubes previously depleted by geomagnetic storm effects refill during the recovery phase from the ionosphere as a result of pressure differences along the flux tubes. Following a geomagnetic disturbance, the He+ ion recovers quickly via the rapid photoionisation of neutral helium, in the F-region and the topside. The recovery of the O+ and H+ ions is less rapid. This is proposed as a result of the respective charge exchange reactions with neutral atomic hydrogen and oxygen. Preliminary model calculations support the proposed mechanism.Key words. Magnetospheric physics (storms and sub-storms, plasmasphere)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-12-21
    Description: We report on the observation of two distinct cold (Ti2 cm−3) ion populations at geosynchronous orbit. A statistical study was performed on measurements from the geosynchronous Los Alamos plasma instruments, for the period 1990–2004, and complemented by corresponding large-scale plasma sheet data obtained by mapping DMSP observations in the tail. The first population, which has previously been reported in several studies, is observed in the midnight region of geosynchronous orbit. The second population, which has drawn less attention, is detected on the dawn side of geosynchronous orbit. No such cold, dense population is observed on the dusk side of geosynchronous orbit on a frequent basis. The temporal evolution of various plasma parameters as a function of local time shows that the two populations appear at geosynchronous orbit as distinct populations, since the appearance of a midnight population is not usually associated with that of a dawn population, and vice versa. The midnight ion population is typically observed after the IMF has been northward for some time and is convected inward toward geosynchronous orbit after an observed mild southward turning of the average IMF. It is interpreted that the source of the midnight population is the cold, dense plasma sheet (CDPS). The dawn-side cold and dense ion population is associated with previously strong southward IMF and consequently occurs during substantial geomagnetic activity. These events are typically observed around the end of the main phase of the corresponding Dst decrease, down to −50 nT on average. It is unlikely that this dawn population is simply the low-latitude boundary layer (LLBL) moving closer to Earth because (1) no symmetric dusk population is observed and (2) on average a small sunward flow (~15 km/s) is observed for those events. The cold, dense population at dawn is thus observed during active times (based on Dst, Kp and AE indices) in comparison with the midnight case. However, since the dawn population is observed only around the end of the main Dst decrease, it is concluded that this population does not typically contribute to the Dst decrease during the main phase. This population may rather be transported to geosynchronous orbit by means of a compression and convection enhancement in the magnetosphere, with a preferential access from the dawn flank with no apparent counterpart at dusk. DMSP data suggest that a cold and dense plasma source is mainly present at dawn.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-11-04
    Description: Among the many challenges facing the space weather modelling community today, is the need for validation and verification methods of the numerical models available describing the complex nonlinear Sun-Earth system. Magnetohydrodynamic (MHD) models represent the latest numerical models of this environment and have the unique ability to span the enormous distances present in the magnetosphere, from several hundred kilometres to several thousand kilometres above the Earth's surface. This makes it especially difficult to develop verification and validation methods which posses the same range spans as the models. In this paper we present a first general large-scale comparison between four years (2001–2004) worth of in situ Cluster plasma observations and the corresponding simulated predictions from the coupled Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code. The comparison between the in situ measurements and the model predictions reveals that by systematically constraining the MHD model inflow boundary conditions a good correlation between the in situ observations and the modeled data can be found. These results have an implication for modelling studies addressing also smaller scale features of the magnetosphere. The global MHD simulation can therefore be used to place localised satellite and/or ground-based observations into a global context and fill the gaps left by measurements.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-03-26
    Description: Moments calculated from the ion distributions (~0–40 keV) measured by the Cluster Ion Spectrometry (CIS) instrument are combined with data from the Cluster Flux Gate Magnetometer (FGM) instrument and used to characterise the bulk properties of the plasma in the near-Earth magnetosphere over five years (2001–2005). Results are presented in the form of 2-D xy, xz and yz GSM cuts through the magnetosphere using data obtained from the Cluster Science Data System (CSDS) and the Cluster Active Archive (CAA). Analysis reveals the distribution of ~0–40 keV ions in the inner magnetosphere is highly ordered and highly responsive to changes in solar wind velocity. Specifically, elevations in temperature are found to occur across the entire nightside plasma sheet region during times of fast solar wind. We demonstrate that the nightside plasma sheet ion temperature at a downtail distance of ~12 to 19 Earth radii increases by a factor of ~2 during periods of fast solar wind (500–1000 km s−1) compared to periods of slow solar wind (100–400 km s−1). The spatial extent of these increases are shown in the xy, xz and yz GSM planes. The results from the study have implications for modelling studies and simulations of solar-wind/magnetosphere coupling, which ultimately rely on in situ observations of the plasma sheet properties for input/boundary conditions.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...