ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (6)
  • 1
    Publication Date: 2017-04-10
    Description: We present an evaluation of the ability of passive broadband geostationary satellite measurements to detect high ice water content (IWC 〉 1 g m−3) as part of the European High Altitude Ice Crystals (HAIC) project for detection of upper-atmospheric high IWC, which can be a hazard for aviation. We developed a high IWC mask based on measurements of cloud properties using the Cloud Physical Properties (CPP) algorithm applied to the geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Evaluation of the high IWC mask with satellite measurements of active remote sensors of cloud properties (CLOUDSAT/CALIPSO combined in the DARDAR (raDAR–liDAR) product) reveals that the high IWC mask is capable of detecting high IWC values 〉 1 g m−3 in the DARDAR profiles with a probability of detection of 60–80 %. The best CPP predictors of high IWC were the condensed water path, cloud optical thickness, cloud phase, and cloud top height. The evaluation of the high IWC mask against DARDAR provided indications that the MSG-CPP high IWC mask is more sensitive to cloud ice or cloud water in the upper part of the cloud, which is relevant for aviation purposes. Biases in the CPP results were also identified, in particular a solar zenith angle (SZA) dependence that reduces the performance of the high IWC mask for SZAs 〉 60°. Verification statistics show that for the detection of high IWC a trade-off has to be made between better detection of high IWC scenes and more false detections, i.e., scenes identified by the high IWC mask that do not contain IWC 〉 1 g m−3. However, the large majority of these detections still contain IWC values between 0.1 and 1 g m−3. Comparison of the high IWC mask against results from the Rapidly Developing Thunderstorm (RDT) algorithm applied to the same geostationary SEVIRI data showed that there are similarities and differences with the high IWC mask: the RDT algorithm is very capable of detecting young/new convective cells and areas, whereas the high IWC mask appears to be better capable of detecting more mature and ageing convection as well as cirrus remnants. The lack of detailed understanding of what causes aviation hazards related to high IWC, as well as the lack of clearly defined user requirements, hampers further tuning of the high IWC mask. Future evaluation of the high IWC mask against field campaign data, as well as obtaining user feedback and user requirements from the aviation industry, should provide more information on the performance of the MSG-CPP high IWC mask and contribute to improving the practical use of the high IWC mask.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-04
    Description: Deployed on the mountainous island of Corsica for thunderstorm monitoring purposes in the Mediterranean Basin, SAETTA is a network of 12 LMA (Lightning Mapping Array, designed by New Mexico Tech, USA) stations that allows the 3-D mapping of very high-frequency (VHF) radiation emitted by cloud discharges in the 60–66 MHz band. It works at high temporal (∼40 ns in each 80 µs time window) and spatial (tens of meters at best) resolution within a range of about 350 km. Originally deployed in May 2014, SAETTA was commissioned during the summer and autumn seasons and has now been permanently operational since April 2016 until at least the end of 2020. We first evaluate the performances of SAETTA through the radial, azimuthal, and altitude errors of VHF source localization with the theoretical model of Thomas et al. (2004). We also compute on a 240 km × 240 km domain the minimum altitude at which a VHF source can be detected by at least six stations by taking into account the masking effect of the relief. We then report the 3-year observations on the same domain in terms of number of lightning days per square kilometer (i.e., total number of days during which lightning has been detected in a given 1 km square pixel) and in terms of lightning days integrated across the domain. The lightning activity is first maximum in June because of daytime convection driven by solar energy input, but concentrates on a specific hot spot in July just above the intersection of the three main valleys. This hot spot is probably due to the low-level convergence of moist air fluxes from sea breezes channeled by the three valleys. Lightning activity increases again in September due to numerous small thunderstorms above the sea and to some high-precipitation events. Finally we report lightning observations of unusual high-altitude discharges associated with the mesoscale convective system of 8 June 2015. Most of them are small discharges on top of an intense convective core during convective surges. They are considered in the flash classification of Thomas et al. (2003) to be small–isolated and short–isolated flashes. The other high-altitude discharges, much less numerous, are long-range flashes that develop through the stratiform region and suddenly undergo upward propagations towards an uppermost thin layer of charge. This latter observation is apparently consistent with the recent conceptual model of Dye and Bansemer (2019) that explains such an upper-level layer of charge in the stratiform region by the development of a non-riming ice collisional charging in a mesoscale updraft.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-04
    Description: The new space-based Lightning Imager (LI) on board the Meteosat Third Generation (MTG) geostationary satellite will improve the observation of lightning over Europe, the Mediterranean Sea, Africa and the Atlantic Ocean from 2021 onwards. In preparation of the use of the upcoming MTG-LI data, we compare observations by the Lightning Imaging Sensor (LIS) on the International Space Station (ISS), which applies an optical technique similar to MTG-LI, to concurrent records of the Low Frequency (LF) ground-based network Meteorage. Data were analyzed over the northwestern Mediterranean Sea from March 01, 2017 to March 20, 2018. Flashes are detected by ISS-LIS using illuminated pixels, also called events, within a given (2.0 ms) frame and during successive frames. Meteorage describes flashes as a suite of Intra-Cloud/cloud-to-cloud (IC) pulses and/or Cloud-to-Ground (CG) strokes. Both events and pulses/strokes are grouped to flashes using a novel in-house algorithm. In our study, ISS-LIS detects about 57 % of the flashes detected by Meteorage. The flash detection efficiency (DE) of Meteorage relative to ISS-LIS exceeds 80 %. Coincident matched flashes detected by the two instruments show a good spatial and temporal agreement. Both peak and mean distance between matches are smaller than the ISS-LIS pixel resolution (about 5.0 km). The timing offset for matched ISS-LIS and Meteorage flashes is usually shorter than the ISS-LIS integration time frame (2.0 ms). The closest events and pulses/strokes of matched flashes achieve sub-millisecond offsets. Further analysis of flash characteristics reveals that longer lasting and more spatially extended flashes are more likely detected by both ISS-LIS and Meteorage than shorter duration and smaller extent flashes. ISS-LIS' relative DE is lower for daytime versus nighttime as well as for CG versus IC flashes. A second ground-based network, the Very High Frequency (VHF) SAETTA Lightning Mapping Array (LMA), further enhances and validates the lightning pairing between ISS-LIS and Meteorage. It also provides altitude information of the lightning discharges and adds a detailed lightning mapping to the comparison for verification and better understanding of the processes. Both ISS-LIS and Meteorage flash detections feature a high degree of correlation with the SAETTA observations (without altitude information). In addition, Meteorage flashes with ISS-LIS match tend to be associated with discharges that occur at significantly higher altitudes than unmatched flashes. Hence, ISS-LIS flash detection suffers degradation with low-level flashes resulting in lower DE.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-17
    Description: Deployed in the mountainous island of Corsica for thunderstorm monitoring purpose in the Mediterranean Basin, SAETTA is a network of 12 LMA stations (Lightning Mapping Array, designed by New Mexico Tech, USA) that allows the 3-D mapping of VHF radiations emitted by cloud discharges in the 60–66 MHz band. It works at high temporal (80 µs) and spatial (tens of meters at best) resolutions within a range of about 350 km. Originally deployed in May 2014, SAETTA was commissioned during the summer and fall seasons and is now permanently operational since April 2016 until at least the end of 2020. We first evaluate the performances of SAETTA through the radial, azimuthal, and altitude errors of VHF sources localization with the theoretical model of Thomas et al. (2004). We also compute on a 240 km × 240 km domain the minimum altitude at which a VHF source can be detected by at least 6 stations by taking into account the mask effect of the relief. We then report the 3-year observations on the same domain in terms of number of lightning days per square kilometer and in terms of lightning days integrated on the whole domain. The lightning activity is first maximum in June because of daytime convection driven by solar energy input, but concentrates on a specific hot spot in July just above the crossroad of the three main valleys. This hot spot is probably due to the low-level convergence of moist air fluxes from sea breezes channeled by the three valleys. Lighting activity increases again in September due to numerous small thunderstorms above the sea and to some high precipitating events. Finally we report lightning observations of unusual high altitude discharges associated with the mesoscale convective system of June 8, 2015. Most of them are small discharges on top of an intense convective core during convective surges. They are considered in the flash classification of Thomas et al. (2003) as small-isolated and short-isolated flashes. The other high altitude discharges, much less numerous, are long range flashes that develop through the stratiform region and suddenly undergo upward propagations towards an uppermost thin layer of charge. This observation supports the recent conceptual model of Dye and Bansemer (2019) that explains such upper level layer of charge in the stratiform region by the development of a non-riming ice collisional charging in a mesoscale updraft.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-25
    Description: We present a newly developed high ice water content mask (High IWC) based on measurements of the cloud physical properties (CPP) algorithm applied to the geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). The mask was developed within the European High Altitude Ice Crystals (HAIC) project for detection of upper atmospheric high IWC, which can be a hazard for aviation. Evaluation of the High IWC mask with satellite measurements of active remote sensors of cloud properties (CLOUDSAT/CALIPSO combined in the DARDAR product) shows that the High IWC mask can be fine-tuned for detection of high IWC values 〉 1 g/m3 in the DARDAR profiles. The best CPP predictors of High IWC were the condensed water path, cloud optical thickness, cloud phase, and cloud top height. The evaluation of the High IWC mask against DARDAR provided some indications that the MSG-CPP High IWC mask is more sensitive to cloud ice or cloud water in the upper part of the cloud, which is relevant for aviation purposes. Biases in the CPP results were also identified, in particular a solar zenith angle (SZA) dependence that reduces the performance of the High IWC mask for SZAs 〉 60°. Verification statistics show that for the detection of High IWC a trade-off has to be made between better detection of High IWC scenes and more false detections, i.e. scenes identified by the High IWC mask that do not contain IWC 〉 1 g/m3. However, the large majority of these detections still contain IWC values between 0.1–1 g/m3. Comparison of the High IEC mask against results from the Rapid Developing Thunderstorm (RDT) algorithm applied to the same geostationary SEVIRI data showed that there are similarities and differences with the High IWC mask: the RDT algorithm is very capable of detection young/new convective cells and areas, whereas the High IWC mask appears to be better capable of detecting more mature and ageing convection as well as cirrus remnants. The lack of detailed understanding what causes aviation hazards related to High IWC hampers further tuning of the High IWC mask. Additional evaluation of the High IWC mask against field campaign data should provide more information on the performance of the MSG-CPP High IWC mask and contribute to a better characterization.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-20
    Description: The new space-based Lightning Imager (LI) onboard the Meteosat Third Generation (MTG) geostationary satellite will improve the observation of lightning over Europe, the Mediterranean Sea, Africa and the Atlantic Ocean from 2021 onwards. In preparation for the use of the upcoming MTG-LI data, we compare observations by the Lightning Imaging Sensor (LIS) on the International Space Station (ISS), which applies an optical technique similar to MTG-LI, to concurrent records of the low-frequency (LF) ground-based network Meteorage. Data were analyzed over the northwestern Mediterranean Sea from 1 March 2017 to 20 March 2018. Flashes are detected by ISS-LIS using illuminated pixels, also called events, within a given (2.0 ms) frame and during successive frames. Meteorage describes flashes as a suite of intra-cloud and cloud-to-cloud (IC) pulses and/or cloud-to-ground (CG) strokes. Both events as well as pulses and strokes are grouped to flashes using a novel in-house algorithm. In our study, ISS-LIS detects about 57 % of the flashes detected by Meteorage. The flash detection efficiency (DE) of Meteorage relative to ISS-LIS exceeds 80 %. Coincident matched flashes detected by the two instruments show a good spatial and temporal agreement. Both peak and mean distances between matches are smaller than the ISS-LIS pixel resolution (about 5.0 km). The timing offset for matched ISS-LIS and Meteorage flashes is usually shorter than the ISS-LIS integration time frame (2.0 ms). The closest events and the pulses and strokes of matched flashes achieve sub-millisecond offsets. Further analysis of flash characteristics reveals that longer-lasting and more spatially extended flashes are more likely detected by both ISS-LIS and Meteorage than shorter-duration and smaller-extent flashes. The ISS-LIS relative DE is lower for daytime versus nighttime as well as for CG versus IC flashes. A second ground-based network, the very high-frequency (VHF) SAETTA Lightning Mapping Array (LMA), further enhances and validates the lightning pairing between ISS-LIS and Meteorage. It also provides altitude information on the lightning discharges and adds a detailed lightning mapping to the comparison for verification and better understanding of the processes. Both ISS-LIS and Meteorage flash detections feature a high degree of correlation with the SAETTA observations (without altitude information). In addition, Meteorage flashes with ISS-LIS match tend to be associated with discharges that occur at significantly higher altitudes than unmatched flashes. Hence, ISS-LIS flash detection suffers from degradation, with low-level flashes resulting in lower DE.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...