ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-02
    Description: Aerosol–cloud interactions are the largest source of uncertainty in quantifying anthropogenic radiative forcing. The large uncertainty is, in part, due to the difficulty of predicting cloud microphysical parameters, such as the cloud droplet number concentration (Nd). Even though rigorous first-principle approaches exist to calculate Nd, the cloud and aerosol research community also relies on empirical approaches such as relating Nd to aerosol mass concentration. Here we analyze relationships between Nd and cloud water chemical composition, in addition to the effect of environmental factors on the degree of the relationships. Warm, marine, stratocumulus clouds off the California coast were sampled throughout four summer campaigns between 2011 and 2016. A total of 385 cloud water samples were collected and analyzed for 80 chemical species. Single- and multispecies log–log linear regressions were performed to predict Nd using chemical composition. Single-species regressions reveal that the species that best predicts Nd is total sulfate (Radj2=0.40). Multispecies regressions reveal that adding more species does not necessarily produce a better model, as six or more species yield regressions that are statistically insignificant. A commonality among the multispecies regressions that produce the highest correlation with Nd was that most included sulfate (either total or non-sea-salt), an ocean emissions tracer (such as sodium), and an organic tracer (such as oxalate). Binning the data according to turbulence, smoke influence, and in-cloud height allowed for examination of the effect of these environmental factors on the composition–Nd correlation. Accounting for turbulence, quantified as the standard deviation of vertical wind speed, showed that the correlation between Nd with both total sulfate and sodium increased at higher turbulence conditions, consistent with turbulence promoting the mixing between ocean surface and cloud base. Considering the influence of smoke significantly improved the correlation with Nd for two biomass burning tracer species in the study region, specifically oxalate and iron. When binning by in-cloud height, non-sea-salt sulfate and sodium correlated best with Nd at cloud top, whereas iron and oxalate correlated best with Nd at cloud base.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-21
    Description: This study provides a detailed characterization of stratocumulus clearings off the US West Coast using remote sensing, reanalysis, and airborne in situ data. Ten years (2009–2018) of Geostationary Operational Environmental Satellite (GOES) imagery data are used to quantify the monthly frequency, growth rate of total area (GRArea), and dimensional characteristics of 306 total clearings. While there is interannual variability, the summer (winter) months experienced the most (least) clearing events, with the lowest cloud fractions being in close proximity to coastal topographical features along the central to northern coast of California, including especially just south of Cape Mendocino and Cape Blanco. From 09:00 to 18:00 (PST), the median length, width, and area of clearings increased from 680 to 1231, 193 to 443, and ∼67 000 to ∼250 000 km2, respectively. Machine learning was applied to identify the most influential factors governing the GRArea of clearings between 09:00 and 12:00 PST, which is the time frame of most rapid clearing expansion. The results from gradient-boosted regression tree (GBRT) modeling revealed that air temperature at 850 hPa (T850), specific humidity at 950 hPa (q950), sea surface temperature (SST), and anomaly in mean sea level pressure (MSLPanom) were probably most impactful in enhancing GRArea using two scoring schemes. Clearings have distinguishing features such as an enhanced Pacific high shifted more towards northern California, offshore air that is warm and dry, stronger coastal surface winds, enhanced lower-tropospheric static stability, and increased subsidence. Although clearings are associated obviously with reduced cloud fraction where they reside, the domain-averaged cloud albedo was actually slightly higher on clearing days as compared to non-clearing days. To validate speculated processes linking environmental parameters to clearing growth rates based on satellite and reanalysis data, airborne data from three case flights were examined. Measurements were compared on both sides of the clear–cloudy border of clearings at multiple altitudes in the boundary layer and free troposphere, with results helping to support links suggested by this study's model simulations. More specifically, airborne data revealed the influence of the coastal low-level jet and extensive horizontal shear at cloud-relevant altitudes that promoted mixing between clear and cloudy air. Vertical profile data provide support for warm and dry air in the free troposphere, additionally promoting expansion of clearings. Airborne data revealed greater evidence of sea salt in clouds on clearing days, pointing to a possible role for, or simply the presence of, this aerosol type in clearing areas coincident with stronger coastal winds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-08
    Description: The formation of sulfate and secondary organic aerosol mass in the aqueous phase (aqSOA) of cloud and fog droplets can significantly contribute to ambient aerosol mass. While tracer compounds give evidence that aqueous-phase processing occurred, they do not reveal the extent to which particle properties have been modified in terms of mass, chemical composition, hygroscopicity, and oxidation state. We analyze data from several field experiments and model studies for six air mass types (urban, biogenic, marine, wild fire biomass burning, agricultural biomass burning, and background air) using aerosol size and composition measurements for particles 13–850 nm in diameter. We focus on the trends of changes in mass, hygroscopicity parameter κ, and oxygen-to-carbon (O ∕ C) ratio due to chemical cloud processing. We find that the modification of these parameters upon cloud processing is most evident in urban, marine, and biogenic air masses, i.e., air masses that are more polluted than very clean air (background air) but cleaner than heavily polluted plumes as encountered during biomass burning. Based on these trends, we suggest that the mass ratio (Rtot) of the potential aerosol sulfate and aqSOA mass to the initial aerosol mass can be used to predict whether chemical cloud processing will be detectable. Scenarios in which this ratio exceeds Rtot∼0.5 are the most likely ones in which clouds can significantly change aerosol parameters. It should be noted that the absolute value of Rtot depends on the considered size range of particles. Rtot is dominated by the addition of sulfate (Rsulf) in all scenarios due to the more efficient conversion of SO2 to sulfate compared to aqSOA formation from organic gases. As the formation processes of aqSOA are still poorly understood, the estimate of RaqSOA is likely associated with large uncertainties. Comparison to Rtot values as calculated for ambient data at different locations validates the applicability of the concept to predict a chemical cloud-processing signature in selected air masses.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-05
    Description: A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Following previous designs, the probe uses inertial separation to remove cloud droplets from the airstream, which are subsequently collected and stored for offline analysis. We report details of the design, operation, and modelled and measured probe performance. Computational fluid dynamics (CFD) was used to understand the flow patterns around the complex interior geometrical features that were optimized to ensure efficient droplet capture. CFD simulations coupled with particle tracking and multiphase surface transport modelling provide detailed estimates of the probe performance across the entire range of flight operating conditions and sampling scenarios. Physical operation of the probe was tested on a Lockheed C-130 Hercules (fuselage mounted) and de Havilland Twin Otter (wing pylon mounted) during three airborne field campaigns. During C-130 flights on the final field campaign, the probe reflected the most developed version of the design and a median cloud water collection rate of 4.5 mL min−1 was achieved. This allowed samples to be collected over 1–2 min under optimal cloud conditions. Flights on the Twin Otter featured an inter-comparison of the new probe with a slotted-rod collector, which has an extensive airborne campaign legacy. Comparison of trace species concentrations showed good agreement between collection techniques, with absolute concentrations of most major ions agreeing within 30 %, over a range of several orders of magnitude.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-02
    Description: This study uses airborne data from two field campaigns off the California coast to characterize aerosol size distribution characteristics in the entrainment interface layer (EIL), a thin and turbulent layer above marine stratocumulus cloud tops, which separates the stratocumulus-topped boundary layer (STBL) from the free troposphere (FT). The vertical bounds of the EIL are defined in this work based on considerations of buoyancy and turbulence using thermodynamic and dynamic data. Aerosol number concentrations are examined from three different probes with varying particle diameter (Dp) ranges: 〉 3 nm, 〉 10 nm, and 0.11–3.4 µm. Relative to the EIL and FT layers, the sub-cloud (SUB) layer exhibited lower aerosol number concentrations and higher surface area concentrations. High particle number concentrations between 3 and 10 nm in the EIL are indicative of enhanced nucleation, assisted by high actinic fluxes, cool and moist air, and much lower surface area concentrations than the STBL. Slopes of number concentration versus altitude in the EIL were correlated with the particle number concentration difference between the SUB and lower FT layers. The EIL aerosol size distribution was influenced by varying degrees from STBL aerosol versus subsiding FT aerosol depending on the case examined. These results emphasize the important role of the EIL in influencing nucleation and aerosol–cloud–climate interactions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-05-15
    Description: A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated and extensively tested. Following previous designs, the probe uses inertial separation to remove cloud droplets from the airstream, which are subsequently collected and stored for offline analysis. We report details of the design, operation, and modelled and measured probe performance. Computational Fluid Dynamics (CFD) was used to understand the flow patterns around the complex interior geometrical features that were optimized to ensure efficient droplet capture. CFD simulations coupled with particle tracking and multiphase surface transport modelling provide detailed estimates of the probe performance across the entire range of flight operating conditions and sampling scenarios. Physical operation of the probe was tested on a Lockheed C-130 Hercules (fuselage mounted) and de Havilland Twin Otter (wing pylon mounted) during three airborne field campaigns. During C-130 flights on the final field campaign, the probe reflected the most developed version of the design and a median cloud water collection rate of 4.5mlmin−1 was achieved. This allowed samples to be collected over 1–2 minutes under optimal cloud conditions. Flights on the Twin Otter featured an inter-comparison of the new probe with a slotted-rod collector, which has an extensive airborne campaign legacy. Comparison of trace species concentrations showed good agreement between collection techniques, with absolute concentrations of most major ions agreeing within 30%, over a range of several orders of magnitude.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-25
    Description: The formation of sulfate and secondary organic aerosol mass in the aqueous phase (aqSOA) of cloud and fog droplets can significantly contribute to ambient aerosol mass. While tracer compounds give evidence that aqueous phase processing occurred, they do not reveal the extent to which particle properties have been modified in terms of mass, chemical composition, hygroscopicity and oxidation state. We analyse data from several field experiments and model studies for six air mass types (urban, biogenic, marine, wild fire biomass burning, agricultural biomass burning and background air). We focus on the trends of changes in mass, hygroscopicity parameter κ, and oxygen-to-carbon (O/C) ratio due to cloud processing. We find that the modification of these parameters upon cloud-processing is most evident in urban, marine and biogenic air masses, i.e. air masses that are more polluted than very clean air (background air) but cleaner than heavily polluted plumes as encountered during biomass burning. Based on these trends, we suggest that the mass ratio (Rtot) of the potential aerosol sulfate and aqSOA mass to the initial aerosol mass can be used to predict whether cloud processing will be detectable. Scenarios where this ratio exceeds Rtot~2 are the most likely ones where clouds can significantly change aerosol parameters. Comparison to Rtot values as calculated for ambient data at different locations confirm the applicability of the concept to predict a cloud-processing signature in selected air masses.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-06
    Description: This study uses airborne data from two field campaigns off the California coast to characterize aerosol size distribution characteristics in the entrainment interface layer (EIL), a thin and turbulent layer above marine stratocumulus cloud tops, that separates the stratocumulus-topped boundary layer (STBL) from the free troposphere (FT). The vertical bounds of the EIL are defined in this work based on considerations of buoyancy and turbulence using thermodynamic and dynamic data. Aerosol number concentrations are examined from three different probes with varying particle diameter (Dp) ranges: 〉 3 nm, 〉 10 nm, 0.11–3.4 µm. Relative to the EIL and FT layers, the sub-cloud (SUB) layer exhibited lower aerosol number concentrations and higher surface area concentrations. High particle number concentrations between 3 and 10 nm in the EIL is indicative of enhanced nucleation, assisted by high actinic fluxes, cool and moist air, and much lower surface area concentrations than the STBL. Slopes of number concentration versus altitude in the EIL were correlated with the particle number concentration difference between the SUB and lower FT layers. The EIL aerosol size distribution was influenced by varying degrees from STBL aerosol versus subsiding FT aerosol depending on the case examined. These results emphasize the important role of the EIL in influencing nucleation and aerosol-cloud-climate interactions.  
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-15
    Description: The tropical Northwest Pacific (TNWP) is a receptor for pollution sources throughout Asia and is highly susceptible to climate change, making it imperative to understand long-range transport in this complex aerosol-meteorological environment. Measurements from the NASA Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex; 24 August to 5 October 2019) and back trajectories from the National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) were used to examine transport into the TNWP from the Maritime Continent (MC), peninsular Southeast Asia (PSEA), East Asia (EA), and the West Pacific (WP). A mid-campaign monsoon shift on 20 September 2019 led to distinct transport patterns between the southwest monsoon (SWM; before 20 September) and monsoon transition (MT; after 20 September). During the SWM, long-range transport was a function of southwesterly winds and cyclones over the South China Sea. Low- (high-) altitude air generally came from MC (PSEA), implying distinct aerosol processing related to convection and perhaps wind shear. The MT saw transport from EA and WP, driven by Pacific northeasterly winds, continental anticyclones, and cyclones over the East China Sea. Composition of transported air differed by emission source and accumulated precipitation along trajectories (APT). MC air was characterized by biomass burning tracers while major components of EA air pointed to Asian outflow and secondary formation. Convective scavenging of PSEA air was evidenced by considerable vertical differences between aerosol species but not trace gases, as well as notably higher APT and smaller particles than other regions. Finally, we observed a possible wet scavenging mechanism acting on MC air aloft that was not strictly linked to precipitation. These results are important for understanding the transport and processing of air masses with further implications for modeling aerosol lifecycles and guiding international policymaking to public health and climate, particularly during the SWM and MT.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-10
    Description: Aerosols over Earth's remote and spatially extensive ocean surfaces have important influences on planetary climate. However, these aerosols and their effects remain poorly understood, in part due to the remoteness and limited observations over these regions. In this study, we seek to understand factors that shape marine aerosol size distributions and composition in the northwest Atlantic Ocean region. We use the GEOS-Chem model with the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm model to interpret measurements collected from ship and aircraft during the four seasonal campaigns of the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) conducted between 2015 and 2018. Observations from the NAAMES campaigns show enhancements in the campaign-median number of aerosols with diameters larger than 3 nm in the lower troposphere (below 6 km), most pronounced during the phytoplankton bloom maxima (May/June) below 2 km in the free troposphere. Our simulations, combined with NAAMES ship and aircraft measurements, suggest several key factors that contribute to aerosol number and size in the northwest Atlantic lower troposphere, with significant regional-mean (40–60∘ N and 20–50∘ W) cloud-albedo aerosol indirect effect (AIE) and direct radiative effect (DRE) processes during the phytoplankton bloom. These key factors and their associated simulated radiative effects in the region include the following: (1) particle formation near and above the marine boundary layer (MBL) top (AIE: −3.37 W m−2, DRE: −0.62 W m−2); (2) particle growth due to marine secondary organic aerosol (MSOA) as the nascent particles subside into the MBL, enabling them to become cloud-condensation-nuclei-sized particles (AIE: −2.27 W m−2, DRE: −0.10 W m−2); (3) particle formation and growth due to the products of dimethyl sulfide, above and within the MBL (−1.29 W m−2, DRE: −0.06 W m−2); (4) ship emissions (AIE: −0.62 W m−2, DRE: −0.05 W m−2); and (5) primary sea spray emissions (AIE: +0.04 W m−2, DRE: −0.79 W m−2). Our results suggest that a synergy of particle formation in the lower troposphere (particularly near and above the MBL top) and growth by MSOA contributes strongly to cloud-condensation-nuclei-sized particles with significant regional radiative effects in the northwest Atlantic. To gain confidence in radiative effect magnitudes, future work is needed to understand (1) the sources and temperature dependence of condensable marine vapors forming MSOA, (2) primary sea spray emissions, and (3) the species that can form new particles in the lower troposphere and grow these particles as they descend into the marine boundary layer.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...