ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-27
    Description: Accurate predictions of expected radiation dose levels on Mars are often provided by specific radiation transport codes that have been adapted to space conditions. Unsurprisingly, several of the main space agencies and institutions involved in space research and technology tend to work with their own in-house radiation codes. We present the codes that are related to the simulation of the radiation on Mars' surface under different scenarios. All of these codes have similar fields of application, but they differ with respect to several aspects, including the energy range and types of projectiles considered as well as the models of nuclear reactions considered.
    Print ISSN: 2193-0856
    Electronic ISSN: 2193-0864
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-02
    Description: The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenetic zonation) and its magnitude dependence (without using Gutenberg–Richter's law). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg–Richter statistics and a zoned approach. Three attenuation laws have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-23
    Description: The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenic zonation) and its magnitude dependence (without using Gutenberg–Richter's relationship). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg–Richter statistics and a zoned approach. Three attenuation relationships have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-24
    Description: Weekly samples from surface waters, springs, soil water and rainfall were collected in a 76.9 km2 mountain rain forest catchment and its tributaries in southern Ecuador. Time series of the stable water isotopes δ18O and δ2H were used to calculate mean transit times (MTTs) and the transit time distribution functions (TTDs) solving the convolution method for seven lumped-parameter models. For each model setup, the generalized likelihood uncertainty estimation (GLUE) methodology was applied to find the best predictions, behavioral solutions and parameter identifiability. For the study basin, TTDs based on model types such as the linear–piston flow for soil waters and the exponential–piston flow for surface waters and springs performed better than more versatile equations such as the gamma and the two parallel linear reservoirs. Notwithstanding both approaches yielded a better goodness of fit for most sites, but with considerable larger uncertainty shown by GLUE. Among the tested models, corresponding results were obtained for soil waters with short MTTs (ranging from 2 to 9 weeks). For waters with longer MTTs differences were found, suggesting that for those cases the MTT should be based at least on an intercomparison of several models. Under dominant baseflow conditions long MTTs for stream water ≥ 2 yr were detected, a phenomenon also observed for shallow springs. Short MTTs for water in the top soil layer indicate a rapid exchange of surface waters with deeper soil horizons. Differences in travel times between soils suggest that there is evidence of a land use effect on flow generation.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-25
    Description: The Pacific–Andean region in western South America suffers from rainfall data scarcity, as is the case for many regions in the South. An important research question is whether the latest satellite-based and numerical weather prediction (NWP) model outputs capture well the temporal and spatial patterns of rainfall over the region, and hence have the potential to compensate for the data scarcity. Based on an interpolated gauge-based rainfall data set, the performance of the Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 and its predecessor V6, and the North Western South America Retrospective Simulation (OA-NOSA30) are evaluated over 21 sub-catchments in the Pacific–Andean region of Ecuador and Peru (PAEP). In general, precipitation estimates from TRMM and OA-NOSA30 capture the seasonal features of precipitation in the study area. Quantitatively, only the southern sub-catchments of Ecuador and northern Peru (3.6–6° S) are relatively well estimated by both products. The accuracy is considerably less in the northern and central basins of Ecuador (0–3.6° S). It is shown that the probability of detection (POD) is better for light precipitation (POD decreases from 0.6 for rates less than 5 mm day−1 to 0.2 for rates higher than 20 mm day−1. Compared to its predecessor, 3B42 V7 shows modest region-wide improvements in reducing biases. The improvement is specific to the coastal and open ocean sub-catchments. In view of hydrological applications, the correlation of TRMM and OA-NOSA30 estimates with observations increases with time aggregation. The correlation is higher for the monthly time aggregation in comparison with the daily, weekly, and 15-day time scales. Furthermore, it is found that TRMM performs better than OA-NOSA30 in generating the spatial distribution of mean annual precipitation.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-03-02
    Description: Precipitation event samples and weekly based water samples from streams and soils were collected in a tropical montane cloud forest catchment for 2 years and analyzed for stable water isotopes in order to understand the effect of sampling frequency in the performance of three lumped-parameter distribution functions (exponential-piston flow, linear-piston flow and gamma) which were used to estimate mean transit times of waters. Precipitation data, used as input function for the models, were aggregated to daily, weekly, bi-weekly, monthly and bi-monthly sampling resolutions, while analyzed frequencies for outflows went from weekly to bi-monthly. By using different scenarios involving diverse sampling frequencies, this study reveals that the effect of lowering the sampling frequency depends on the water type. For soil waters, with transit times on the order of few weeks, there was a clear trend of over predictions. In contrast, the trend for stream waters, which have a more damped isotopic signal and mean transit times on the order of 2 to 4 years, was less clear and showed a dependence on the type of model used. The trade-off to coarse data resolutions could potentially lead to misleading conclusions on how water actually moves through the catchment, notwithstanding that these predictions could reach better fitting efficiencies, fewer uncertainties, errors and biases. For both water types an optimal sampling frequency seems to be 1 or at most 2 weeks. The results of our analyses provide information for the planning of future fieldwork in similar Andean or other catchments.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-07
    Description: Stream and soil waters were collected on a weekly basis in a tropical montane cloud forest catchment for two years and analyzed for stable water isotopes in order to infer transit time distribution functions and to define the mean transit times. Depending on the water type (stream or soil water), lumped distribution functions such as Exponential-Piston flow, Linear-Piston flow and Gamma models using temporal isotopic variations of precipitation event samples as input, were fitted. Samples were aggregated to daily, weekly, biweekly, monthly and bimonthly time scales in order to check the sensitivity of temporal sampling on model predictions. The study reveals that the effect of decreasing sampling frequency depends on the water type. For soil waters with transit times in the order of weeks to months, there was a clear trend of over prediction. In contrast, the trend of prediction for stream waters, with a dampened isotopic signal and mean transit times in the order of 2 to 4 years, was less clear and depending on the type of model used. The trade-off to coarse data resolutions could potentially lead to misleading conclusions on how water actually moves through the catchment, while at the same time predictions can reach better fitting efficiencies, lesser uncertainties, errors and biases. For both water types an optimal sampling frequency seems to be one or at most two weeks. The results of our analyses provide information for the planning (in particular in terms of cost-benefit and time requirements) of future fieldwork in similar Andean or other catchments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-10
    Description: An important issue for the Pacific-Andean basin in western South-America is whether the latest satellite-based and Numerical Weather Prediction (NWP) model outputs, provide the potential to compensate data scarcity. Based on a comprehensive dataset of ground precipitation, the performance of the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 and its predecessor version the 3B42V6, and the Weather Research Forecast (WRF) precipitation product (OA-NOSA30) are evaluated over 21 sub-catchments situated in the westernmost N-S axis of South America: the Pacific-Andean Basin in Ecuador and Peru (PAEP). In general, precipitation estimates from TRMM and OA-NOSA30 capture the seasonal features of precipitation in the study area. Quantitatively, only the Southern sub-catchments of Ecuador and Northern Peru (3.6–6° S) are relatively well estimated by both methods. The accuracy of both approaches is considerably less in the northern and central basins of Ecuador (0–3.6° S). It is shown that the detection probability is better for light precipitation (less than 5 mm day−1). Compared to its predecessor 3B42V7 shows modest basin-wide improvements in reducing biases. The improvement is specific to the coastal and open ocean sub-catchments. In view of hydrological applications, the correlation of TMPA's and OA-NOSA30 estimates with observations increases with time aggregation. The correlation is higher for the monthly time aggregation in comparison with the daily, weekly and 15-daily time scales. Furthermore, it is found that TMPA performs better than OA-NOSA30 in generating the spatial distribution of mean annual precipitation.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-26
    Description: This study focuses on the investigation of the mean transit time (MTT) of water and its spatial variability in a tropical high-elevation ecosystem (wet Andean páramo). The study site is the Zhurucay River Ecohydrological Observatory (7.53 km2) located in southern Ecuador. A lumped parameter model considering five transit time distribution (TTD) functions was used to estimate MTTs under steady-state conditions (i.e., baseflow MTT). We used a unique data set of the δ18O isotopic composition of rainfall and streamflow water samples collected for 3 years (May 2011 to May 2014) in a nested monitoring system of streams. Linear regression between MTT and landscape (soil and vegetation cover, geology, and topography) and hydrometric (runoff coefficient and specific discharge rates) variables was used to explore controls on MTT variability, as well as mean electrical conductivity (MEC) as a possible proxy for MTT. Results revealed that the exponential TTD function best describes the hydrology of the site, indicating a relatively simple transition from rainfall water to the streams through the organic horizon of the wet páramo soils. MTT of the streams is relatively short (0.15–0.73 years, 53–264 days). Regression analysis revealed a negative correlation between the catchment's average slope and MTT (R2 =  0.78, p 
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-24
    Description: This paper presents a lumped conceptual model designed for simulating the rainfallrunoff response of mountain micro-catchments with natural vegetation located in the south of Ecuador. The conceptual model is mimicking the soil hydrology and consists of a maximum of three linear reservoirs in series. A two and three reservoir model structure were tested, respectively A GLUE uncertainty analysis was applied to assess the model performance. Simulation results of the discharge confirmed the applicability of the soil-based conceptual model structure for the selected study areas, during model calibration and validation. The three reservoir model best predicted the runoff, nevertheless the two reservoir model well captures the rainfall-runoff process of the micro-catchments with páramo vegetation. Although differences in climate regime, vegetation, and soil of the selected catchments runoff is strongly controlled by the precipitation and soil type, and the horizons contributing to runoff are defined by their antecedent wetness. Results confirm that the discharge is mainly controlled by lateral subsurface flow through the organic horizons, while during dry conditions the C-horizon and the bedrock mainly contribute to discharge. Lateral transport through the densely rooted top horizon and the litter layer occurs during storm events, being under those conditions the major discharge component. Overland flow is a local phenomenon, negligible in comparison to the other flow components.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...