ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-07-06
    Description: Temperature increases cause a unique type of damage to permafrost. This damage is often expressed as the degradation of permafrost thermal stability, which is very important for engineering design, resource development, and environmental protection in cold regions. This study evaluates the degradation of permafrost stability over the QTP from the 1960s to the 2000s using estimated decadal mean annual air temperatures (MAATs) by integrating remote sensing-based estimates of mean annual land surface temperatures (MASTs), leaf area index (LAI) and fractional snow cover values, and decadal mean MAATs taken at 152 weather stations using geographically weighted regression (GWR). The results reflect a continuous rise of approximately 0.04 °C/a in the decadal mean MAAT values over the past half century. Climate warming has led to a reduction in permafrost stability in the past half century. The total degraded area of stability is approximately 153.76 x 104 km2, which corresponds to 87.98 % of the permafrost area in the 1960s. The stability of 75.24 % of the extremely stable permafrost, 89.56 % of the stable permafrost, 90.3 % of the sub-stable permafrost, 92.31 % of the transitional permafrost, and 32.8 % of the unstable permafrost has been reduced to lower levels of stability. Approximately 49.4 % of the unstable permafrost and 95.95 % of the extremely unstable permafrost has degraded to seasonally frozen ground. The sensitivity of the permafrost to climate is dependent on its stability level. The mean elevations of the extremely stable, stable, sub-stable, transitional, unstable, and extremely unstable permafrost areas increased by 88 m, 97 m, 155 m, 185 m, 161 m and 250 m, respectively. The degradation mainly occurred from the 1960s to the 1970s and from the 1990s to the 2000s. This degradation has led to increases in risks to infrastructure, increased flood risks, reductions in ecosystem resilience, and positive climate feedback effects. It therefore affects the well-being of millions of people and sustainable development at the Third Pole.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-08
    Description: The Tibetan Plateau (TP) has the largest areas of permafrost terrain in the mid- and low-latitude regions of the world. Some permafrost distribution maps have been compiled but, due to limited data sources, ambiguous criteria, inadequate validation, and deficiency of high-quality spatial data sets, there is high uncertainty in the mapping of the permafrost distribution on the TP. We generated a new permafrost map based on freezing and thawing indices from modified Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperatures (LSTs) and validated this map using various ground-based data sets. The soil thermal properties of five soil types across the TP were estimated according to an empirical equation and soil properties (moisture content and bulk density). The temperature at the top of permafrost (TTOP) model was applied to simulate the permafrost distribution. Permafrost, seasonally frozen ground, and unfrozen ground covered areas of 1.06  ×  106 km2 (0.97–1.15  ×  106 km2, 90 % confidence interval) (40 %), 1.46  ×  106 (56 %), and 0.03  ×  106 km2 (1 %), respectively, excluding glaciers and lakes. Ground-based observations of the permafrost distribution across the five investigated regions (IRs, located in the transition zones of the permafrost and seasonally frozen ground) and three highway transects (across the entire permafrost regions from north to south) were used to validate the model. Validation results showed that the kappa coefficient varied from 0.38 to 0.78 with a mean of 0.57 for the five IRs and 0.62 to 0.74 with a mean of 0.68 within the three transects. Compared with earlier studies, the TTOP modelling results show greater accuracy. The results provide more detailed information on the permafrost distribution and basic data for use in future research on the Tibetan Plateau permafrost.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-21
    Description: Air temperature increases thermally degrade permafrost, which has widespread impacts on engineering design, resource development, and environmental protection in cold regions. This study evaluates the potential thermal degradation of permafrost over the Qinghai–Tibet Plateau (QTP) from the 1960s to the 2000s using estimated decadal mean annual air temperatures (MAATs) by integrating remote-sensing-based estimates of mean annual land surface temperatures (MASTs), leaf area index (LAI) and fractional snow cover values, and decadal mean MAAT date from 152 weather stations with a geographically weighted regression (GWR). The results reflect a continuous rise of approximately 0.04 ∘C a−1 in the decadal mean MAAT values over the past half century. A thermal-condition classification matrix is used to convert modelled MAATs to permafrost thermal type. Results show that the climate warming has led to a thermal degradation of permafrost in the past half century. The total area of thermally degraded permafrost is approximately 153.76×104 km2, which corresponds to 88 % of the permafrost area in the 1960s. The thermal condition of 75.2 % of the very cold permafrost, 89.6 % of the cold permafrost, 90.3 % of the cool permafrost, 92.3 % of the warm permafrost, and 32.8 % of the very warm permafrost has been degraded to lower levels of thermal condition. Approximately 49.4 % of the very warm permafrost and 96 % of the likely thawing permafrost has degraded to seasonally frozen ground. The mean elevations of the very cold, cold, cool, warm, very warm, and likely thawing permafrost areas increased by 88, 97, 155, 185, 161, and 250 m, respectively. The degradation mainly occurred from the 1960s to the 1970s and from the 1990s to the 2000s. This degradation may lead to increased risks to infrastructure, reductions in ecosystem resilience, increased flood risks, and positive climate feedback effects. It therefore affects the well-being of millions of people and sustainable development at the Third Pole.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...