ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-11
    Description: The evolution of intra-plate orogens is still poorly understood. Yet, this is of major importance for understanding the Earth and plate dynamic, as well as the link between surface and deep geodynamic processes. The French Massif Central is an intraplate orogen with a mean elevation of 1000 m, with the highest peak elevations ranging from 1500 m to 1885 m. However, active deformation of the region is still debated due to scarce evidence either from geomorphological or geophysical (i.e. geodesy and seismology) data. Because the Cévennes margin allows the use of karst sediments geochronology and morphometrical analysis, we study the vertical displacements of that region: the southern part of the French Massif-Central. Geochronology and morphometrical results, helped with lithospheric-scale numerical modelling, allow, then, a better understanding of this intraplate-orogen evolution and dynamic. Using the ability of the karst to durably record morphological evolution, we first quantify the incision rates. We then investigate tilting of geomorphological benchmarks by means of a high-resolution DEM. We finally use the newly quantified incision rates to constrain numerical models and compare the results with the geomorphometric study. We show that absolute burial age (10Be/26Al on quartz cobbles) and the paleomagnetic analysis of karstic clay deposits for multiple cave system over a large elevation range correlate consistently. This correlation indicates a regional incision rate of 83.4 +17.3/−5.4 m Ma−1 during the last ca 4 Myrs (Plio-Quaternary). Moreover, we point out through the analysis of 55 morphological benchmarks that the studied region has undergone a regional southward tilting. This tilting is expected as being due to a differential vertical motion between the north and southern part of the studied area. Numerical models show that erosion-induced isostatic rebound can explain up to two-thirds of the regional uplift deduced from dating technics and are consistent with the southward tilting obtain from morphological analysis. We presume that the remaining part is related to dynamic topography or thermal isostasy due to the Massif Central plio-quaternary magmatism.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-01
    Description: In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a relative spring gravimeter. Gravity measurements are performed two times a year at the surface and inside caves at different depths on three karst aquifers in southern France: two limestone karst systems and one dolomite karst system. We find that water storage variations occur mainly in the first ten meters of karst unsaturated zone. Afterward, surface to depth gravity measurements are compared between the sites with respect of net water inflow. A difference of seasonal water storage is evidenced probably associated with the lithology. The transmissive function of the epikarst has been partially deduced from the water storage change estimation. Long (〉 6 months) and short (
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-18
    Description: The magnitude of epikarstic water storage variation is evaluated in various karst settings using a relative spring gravimeter. Gravity measurements are performed over a 1.5-year period at the surface and inside caves at different depths on three karst hydro-systems in southern France: two limestone karst systems and one dolomite karst system. We find that significant water storage variations occur in the first 10 m of karst unsaturated zone. The subsurface water storage is also evidenced by complementary magnetic resonance sounding. The comparison between sites of the depth gravity measurements with respect to net water inflow suggests that seasonal water storage depends on the lithology. The transmissive function of the epikarst on the seasonal scale has been deduced from the water storage change estimation. Long (〉 6 months) and short (
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-26
    Description: The evolution of intraplate orogens is still poorly understood. Yet, it is of major importance for understanding the Earth and plate dynamics, as well as the link between surface and deep geodynamic processes. The French Massif Central is an intraplate orogen with a mean elevation of 1000 m, with the highest peak elevations ranging from 1500 to 1885 m. However, active deformation of the region is still debated due to scarce evidence either from geomorphological or geodetic and seismologic data. We focus our study on the southern part of the Massif Central, known as the Cévennes and Grands Causses, which is a key area to study the relationship between the recent geological deformation and landscape evolution. This can be done through the study of numerous karst systems with trapped sediments combined with the analysis of a high-resolution digital elevation model (DEM). Using the ability of karst to durably record morphological evolution, we first quantify the incision rates. We then investigate tilting of geomorphological benchmarks by means of a high-resolution DEM. We finally use the newly quantified incision rates to constrain numerical models and compare the results with the geomorphometric study. We show that absolute burial age (10Be∕26Al on quartz cobbles) and the paleomagnetic analysis of karstic clay deposits for multiple cave system over a large elevation range correlate consistently. This correlation indicates a regional incision rate of 83 +17/-5 m Ma−1 during the last ca. 4 Myr (Pliocene–Quaternary). Moreover, we point out through the analysis of 55 morphological benchmarks that the studied region has undergone a regional southward tilting. This tilting is expected as being due to a differential vertical motion between the northern and southern part of the studied area. Numerical models show that erosion-induced isostatic rebound can explain up to two-thirds of the regional uplift deduced from the geochronological results and are consistent with the southward tilting derived from morphological analysis. We presume that the remaining unexplained uplift is related to dynamic topography or thermal isostasy due to the Massif Central Pliocene–Quaternary magmatism. Integrating both geochronology and morphometrical results into lithospheric-scale numerical models allows a better understanding of this intraplate–orogen evolution and dynamic. We assume that the main conclusions are true to the general case of intraplate deformation. That is to say, once the topography has been generated by a triggering process, rock uplift is then enhanced by erosion and isostatic adjustment leading to a significant accumulation of mainly vertical deformation.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...