ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-03-18
    Description: The transient responses of the energy budget and the hydrological cycle to CO2 and solar forcings of the same magnitude in a global climate model are quantified in this study. Idealized simulations are designed to test the assumption that the responses to forcings are linearly additive, i.e. whether the response to individual forcings can be added to estimate the response to the combined forcing, and to understand the physical processes occurring as a response to a surface warming caused by CO2 or solar forcing increases of the same magnitude. For the global climate model considered, the responses of most variables of the energy budget and hydrological cycle, including surface temperature, do not add linearly. A separation of the response into a forcing and a feedback term shows that for precipitation, this non-linearity arises from the feedback term, i.e. from the non-linearity of the temperature response and the changes in the water cycle resulting from it. Further, changes in the energy budget show that less energy is available at the surface for global annual mean latent heat flux, and hence global annual mean precipitation, in simulations of transient CO2 concentration increase compared to simulations with an equivalent transient increase in the solar constant. On the other hand, lower tropospheric water vapor increases more in simulations with CO2 compared to solar forcing increase of the same magnitude. The response in precipitation is therefore more muted compared to the response in water vapor in CO2 forcing simulations, leading to a larger increase in residence time of water vapor in the atmosphere compared to solar forcing simulations. Finally, energy budget calculations show that poleward atmospheric energy transport increases more in solar forcing compared to equivalent CO2 forcing simulations, which is in line with the identified strong increase in large-scale precipitation in solar forcing scenarios.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-02
    Description: The transient responses of the energy budget and the hydrological cycle to CO2 and solar forcings of the same magnitude in a global climate model are quantified in this study. Idealized simulations are designed to test the assumption that the responses to forcings are linearly additive, i.e. whether the response to individual forcings can be added to estimate the responses to the combined forcing, and to understand the physical processes occurring as a response to a surface warming caused by CO2 or solar forcing increases of the same magnitude. For the global climate model considered, the responses of most variables of the energy budget and hydrological cycle, including surface temperature, do not add linearly. A separation of the response into a forcing and a feedback term shows that for precipitation, this non-linearity arises from the feedback term, i.e. from the non-linearity of the temperature response and the changes in the water cycle resulting from it. Further, changes in the energy budget show that less energy is available at the surface for global annual mean latent heat flux, and hence global annual mean precipitation, in simulations of transient CO2 concentration increase compared to simulations with an equivalent transient increase in the solar constant. On the other hand, lower tropospheric water vapor increase is similar between simulations with CO2 and solar forcing increase of the same magnitude. The response in precipitation is therefore more muted compared to the response in water vapor in CO2 forcing simulations, leading to a larger increase in residence time of water vapor in the atmosphere compared to solar forcing simulations. Finally, energy budget calculations show that poleward atmospheric energy transport increases more in solar forcing compared to equivalent CO2 forcing simulations, which is in line with the identified strong increase in large-scale precipitation in solar forcing scenarios.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-22
    Description: In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-02-21
    Description: In this study we determined the microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L.) growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and – storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May–18 October). Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation was the main driver of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed, mainly driven by vapour pressure deficit (VPD). During dry atmospheric conditions (high VPD) storage water use was reduced. This reduction was disproportionally higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. A third important factor was the tree water deficit. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water deficit.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-08-14
    Description: Storage water use is an indirect consequence of the interplay between different meteorological drivers through their effect on water flow and water potential in trees. We studied these microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L.) growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and – storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May–18 October). Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation and vapour pressure deficit (VPD) were the main atmospheric drivers of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed. VPD was determined to be one of the main drivers of these differences. During dry atmospheric conditions (high VPD) storage water use was reduced. This reduction was higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. The daily minimum tree water content was lower in periods of high VPD, but the reserves were not completely depleted after the first day of high VPD, due to refilling during the night. Nevertheless, the tree water content deficit was a third important factor influencing storage water use. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water content deficit.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-26
    Description: In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-02-15
    Print ISSN: 1810-6528
    Electronic ISSN: 1810-6536
    Topics: Physics
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...