ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (30)
  • 1
    Publication Date: 2009-04-09
    Description: Presented here are comparisons between the Infrared Atmospheric Sounding instrument (IASI) and the "Line-By- Line Radiative Transfer Model" (LBLRTM). Spectral residuals from radiance closure studies during the IASI JAIVEx validation campaign provide insight into a number of spectroscopy issues relevant to remote sounding of temperature, water vapor and trace gases from IASI. In order to perform quality IASI trace gas retrievals the temperature and water vapor fields must be retrieved as accurately as possible. In general, the residuals in the CO2 ν2 region are of the order of the IASI instrument noise. However, outstanding issues in the CO2 spectral regions remain. There is a large residual ~−1.5 K in the 667 cm−1 Q-branch, and residuals in the CO2 ν2 and N2O/CO2 ν3 spectral regions that sample the troposphere are inconsistent, with the N2O/CO2 ν3 region being too negative (warmer) by ~0.6 K. Residuals on this lower wavenumber side of the CO2 ν3 band will be improved by line parameter updates, while future efforts to reduce the residuals reaching ~−0.5 K on the higher wavenumber side of the CO2 ν3 band will focus on addressing limitations in the modeling of the CO2 line shape (line coupling and duration of collision) effects. Brightness temperature residuals from the radiance closure studies in the ν2 water vapor band have standard deviations of ~0.2–0.3 K with some large peak residuals reaching ±0.5–1.0 K. These are larger than the instrument noise indicating that systematic errors still remain. New H2O line intensities and positions from Coudert have a significant impact on the retrieved water vapor, particularly in the upper troposphere where the water vapor retrievals are 10% drier when using line intensities from Coudert compared with HITRAN2004. In addition to O3, CH4, and CO, the high radiometric calibration of the IASI instrument combined with an accurate forward model allows for the detection of minor species with weak atmospheric signatures in the nadir radiances, such as HNO3 and OCS.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-12
    Description: We present a detailed description of the TES methanol (CH3OH) retrieval algorithm, along with initial global results showing the seasonal and spatial distribution of methanol in the lower troposphere. The full development of the TES methanol retrieval is described, including microwindow selection, error analysis, and the utilization of a priori and initial guess information provided by the GEOS-Chem chemical transport model. Retrieval simulations and a sensitivity analysis using the developed retrieval strategy show that TES: (i) generally provides less than 1.0 piece of information, (ii) is sensitive in the lower troposphere with peak sensitivity typically occurring between ~900–700 hPa (~1–3 km) at a vertical resolution of ~5 km, (iii) has a limit of detectability between 0.5 and 1.0 ppbv Representative Volume Mixing Ratio (RVMR) depending on the atmospheric conditions, corresponding roughly to a profile with a maximum concentration of at least 1 to 2 ppbv, and (iv) in a simulation environment has a mean bias of 0.16 ppbv with a standard deviation of 0.34 ppbv. Applying the newly derived TES retrieval globally and comparing the results with corresponding GEOS-Chem output, we find generally consistent large-scale patterns between the two. However, TES often reveals higher methanol concentrations than simulated in the Northern Hemisphere spring, summer and fall. In the Southern Hemisphere, the TES methanol observations indicate a model overestimate over the bulk of South America from December through July, and a model underestimate during the biomass burning season.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-12
    Description: Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS) are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS 〉0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1–2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 0.26, 0.12 and 3.0 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.5 for expanding canopies with leaf area index
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-31
    Description: Presently only limited sets of tropospheric ammonia (NH3) measurements in the Earth's atmosphere have been reported from satellite and surface station measurements, despite the well-documented negative impact of NH3 on the environment and human health. Presented here is a detailed description of the satellite retrieval strategy and analysis for the Tropospheric Emission Spectrometer (TES) using simulations and measurements. These results show that: (i) the level of detectability for a representative boundary layer TES NH3 mixing ratio value is ~0.4 ppbv, which typically corresponds to a profile that contains a maximum level value of ~1 ppbv; (ii) TES NH3 retrievals generally provide at most one degree of freedom for signal (DOFS), with peak sensitivity between 700 and 900 mbar; (iii) TES NH3 retrievals show significant spatial and seasonal variability of NH3 globally; (iv) initial comparisons of TES observations with GEOS-CHEM estimates show TES values being higher overall. Important differences and similarities between modeled and observed seasonal and spatial trends are noted, with discrepancies indicating areas where the timing and magnitude of modeled NH3 emissions from agricultural sources, and to lesser extent biomass burning sources, need further study.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-15
    Description: Modern data assimilation algorithms depend on accurate infrared spectroscopy in order to make use of the information related to temperature, water vapor (H2O), and other trace gases provided by satellite observations. Reducing the uncertainties in our knowledge of spectroscopic line parameters and continuum absorption is thus important to improve the application of satellite data to weather forecasting. Here we present the results of a rigorous validation of spectroscopic updates to an advanced radiative transfer model, the Line-By-Line Radiative Transfer Model (LBLRTM), against a global dataset of 120 near-nadir, over-ocean, nighttime spectra from the Infrared Atmospheric Sounding Interferometer (IASI). We compare calculations from the latest version of LBLRTM (v12.1) to those from a previous version (v9.4+) to determine the impact of spectroscopic updates to the model on spectral residuals as well as retrieved temperature and H2O profiles. We show that the spectroscopy in the CO2 ν2 and ν3 bands is significantly improved in LBLRTM v12.1 relative to v9.4+, and that these spectroscopic updates lead to mean changes of ~0.5 K in the retrieved vertical temperature profiles between the surface and 10 hPa, with the sign of the change and the variability among cases depending on altitude. We also find that temperature retrievals using each of these two CO2 bands are remarkably consistent in LBLRTM v12.1, potentially allowing these bands to be used to retrieve atmospheric temperature simultaneously. The updated H2O spectroscopy in LBLRTM v12.1 substantially improves the a posteriori residuals in the P-branch of the H2O ν2 band, while the improvements in the R-branch are more modest. The H2O amounts retrieved with LBLRTM v12.1 are on average 14% lower between 100 and 200 hPa, 42% higher near 562 hPa, and 31% higher near the surface compared to the amounts retrieved with v9.4+ due to a combination of the different retrieved temperature profiles and the updated H2O spectroscopy. We also find that the use of a fixed ratio of HDO to H2O in LBLRTM may be responsible for a significant fraction of the remaining bias in the P-branch relative to the R-branch of the H2O ν2 band. There were no changes to O3 spectroscopy between the two model versions, and so both versions give positive a posteriori residuals of ~ 0.3 K in the R-branch of the O3 ν3 band. While the updates to the H2O self-continuum employed by LBLRTM v12.1 have clearly improved the match with observations near the CO2 ν3 band head, we find that these updates have significantly degraded the match with observations in the fundamental band of CO. Finally, significant systematic a posteriori residuals remain in the ν4 band of CH4, but the magnitude of the positive bias in the retrieved mixing ratios is reduced in LBLRTM v12.1, suggesting that the updated spectroscopy could improve retrievals of CH4 from satellite observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-05-26
    Description: Presently only limited sets of tropospheric ammonia (NH3) measurements in the Earth's atmosphere have been reported from satellite and surface station measurements, despite the well-documented negative impact of NH3 on the environment and human health. Presented here is a detailed description of the satellite retrieval strategy and analysis for the Tropospheric Emission Spectrometer (TES) using simulations and measurements. These results show that: (i) the level of detectability for a representative boundary layer TES NH3 mixing ratio value is ~0.3 ppbv, which typically corresponds to a profile that contains a maximum level value of ~1 ppbv; (ii) TES NH3 retrievals provide at most one degree of freedom for signal (DOFS), with peak sensitivity between 700 and 900 mbar; (iii) TES NH3 retrievals show significant spatial and seasonal variability of NH3 globally; (iv) Initial comparisons of TES observations with GEOS-CHEM estimates show TES values being higher overall. Important differences and similarities between modeled and observed seasonal and spatial trends are noted, with discrepancies indicating areas where the timing and magnitude of modeled NH3 emissions from agricultural sources, and to lesser extent biomass burning sources, need further study.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-08
    Description: We present a detailed description of the TES methanol (CH3OH) retrieval algorithm, along with initial global results showing the seasonal and spatial distribution of methanol in the lower troposphere. The full development of the TES methanol retrieval is described, including microwindow selection, error analysis, and the utilization of a priori and initial guess information provided by the GEOS-Chem chemical transport model. Retrieval simulations and a sensitivity analysis using the developed retrieval strategy show that TES: (i) generally provides between 0.5 and 1.0 pieces of information, (ii) is sensitive in the lower troposphere with peak sensitivity typically occurring between ~900–700 hPa (~1–3 km) at a vertical resolution of ~5 km, (iii) has a limit of detectability between 0.5 and 1.0 ppbv Representative Volume Mixing Ratio (RVMR) depending on the atmospheric conditions, corresponding roughly to a profile with a maximum concentration of at least 1 to 2 ppbv, and (iv) in a simulation environment has a mean bias of 0.16 ppbv and a standard deviation of 0.34 ppbv. Applying the newly-derived TES retrieval globally and comparing the results with corresponding GEOS-Chem output, we find generally consistent large-scale patterns between the two. However, TES often reveals higher methanol concentrations than predicted in the Northern Hemisphere spring, summer and fall. In the Southern Hemisphere, the TES methanol observations indicate a model overestimate over the bulk of South America from December through July, and a model underestimate during the biomass burning season.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-16
    Description: The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is often confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). We use here a coupled global chemical transport model (GEOS-Chem) and radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm−2 and a DRE of −1.83 Wm−2 for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm−2 for 2100), while the climate feedbacks on aerosols under rising global temperatures will likely amplify. Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-09
    Description: NH3 retrievals from the NASA Tropospheric Emission Spectrometer (TES), as well as surface and aircraft observations of NH3(g) and submicron NH4(p), are to used to evaluate modelled concentrations of NH3(g) and NH4(p) from the Community Multiscale Air Quality (CMAQ) model in the San Joaquin Valley (SJV) during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. We find that simulations of NH3 driven with the California Air Resources Board (CARB) CalNex emission inventory are qualitatively and spatially consistent with TES satellite observations, with a correlation coefficient (r2) of 0.54. However, the surface observations at Bakersfield indicate a missing diurnal cycle in the model bias, with CMAQ overestimating surface NH3 at night and underestimating it during the day. The surface, satellite, and aircraft observations all suggest that the afternoon NH3 emissions in the CARB inventory are underestimated by at least a factor of two, while the night-time overestimate of NH3(g) is likely due to a combination of overestimated NH3 emissions, underestimated deposition, and insufficient vertical mixing in the WRF meteorological fields used to drive CMAQ. We used the surface observations at Bakersfield to derive an empirical diurnal cycle of NH3 emissions in the SJV, in which night-time and midday emissions differed by about a factor of 4.5. Adding this diurnal profile to the CMAQ simulations while keeping the daily NH3 emissions constant at the CARB values significantly improved the model performance at night, but sizable errors (up to 15 ppbv) in night-time NH3 remain, likely due to remaining errors in vertical mixing at night. The model performance is slightly degraded during the afternoon when the diurnal cycle is adjusted, but this may reflect relatively small (~ 20 %) errors in the total NH3 emissions rather than remaining errors in the diurnal cycle. Running CMAQv5.0.2 with bi-directional NH3 flux also improves model performance on a similar scale, while combining bi-directional NH3 fluxes and adjusted emissions significantly reduces the model bias at night.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-22
    Description: The correlation between methanol (CH3OH) and carbon monoxide (CO) is of particular interest for characterizing biogenic and anthropogenic emission sources of CH3OH and other chemical species. Here, the CH3OH/CO enhancement ratio (ΔCH3OH/ΔCO) in the lower to middle troposphere is examined using coincident CH3OH and CO observations from aircraft (NCAR C-130 and NASA DC-8) and from the Tropospheric Emission Spectrometer (TES) satellite during the MegaCity Initiative: Local and Global Research Observations (MILAGRO) in the Mexico City region in March 2006. ΔCH3OH/ΔCO ratios from the two in-situ aircraft measurements are far higher than previously reported CH3OH emission ratios relative to CO from US cities. This may reflect combustion of different fuel types in this area, and possibly photochemical production of CH3OH in Mexico City outflow. TES CH3OH and CO retrievals over the MILAGRO domain show relatively high sensitivity in the 600–800 hPa range, associated with Mexico City pollution outflow. The TES derived ΔCH3OH/ΔCO ratios during MILAGRO are 18–24 ppt ppb−1, which are similar to those observed from the DC-8 (26–39 ppt ppb−1), but lower than the C-130 observations (41–55 ppt ppb−1). Differences between the ΔCH3OH/ΔCO ratios measured aboard the two aircraft preclude an absolute validation of the TES-derived ratios for this dataset. The ΔCH3OH/ΔCO ratios observed from TES over this domain reflect bulk enhancements of CH3OH and CO in Mexico City outflow. Although the TES measurements are not expected to resolve small-scale variability in the ΔCH3OH/ΔCO ratio downwind of the strong source region of Mexico City, it is demonstrated that TES can clearly distinguish differences in the ΔCH3OH/ΔCO ratio due to different source categories of CH3OH. An example of this is shown by contrasting measurements over Mexico City (strong anthropogenic emissions) with those over the Amazon Basin (strong biogenic emissions). The results from this case study show the potential to gain insight into global sources of CH3OH and related species from satellite observations, especially for regions and time periods where no in situ measurements are available.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...