ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-17
    Description: This paper, developed under the framework of the RECCAP initiative, aims at providing improved estimates of the carbon and GHG (CO2, CH4 and N2O) balance of continental Africa. The various components and processes of the African carbon and GHG budget were considered, and new and available data derived by different methodologies (based on inventories, ecosystem fluxes, models, and atmospheric inversions) were integrated. The related uncertainties were quantified and current gaps and weakness in knowledge and in the monitoring systems were also considered in order to provide indications on the future requirements. The vast majority of the results seem to agree that Africa is probably a small sink of carbon on an annual scale, with an average value of −0.61 ± 0.58 Pg C yr−1. Nevertheless the emissions of CH4 and N2O may turn Africa into a source in terms of CO2 equivalents. At sub-regional level there is a significant spatial variability in both sources and sinks, mainly due to the biome's differences and the different anthropic impacts, with southern Africa as the main source and central Africa, with its evergreen tropical forests, as the main sink. Emissions from land use change in Africa are significant (around 0.32 ± 0.05 Pg C yr−1) and even higher than the fossil fuel ones; this is a unique feature among all the continents. In addition there can be significant carbon losses from land even without changes in the land use (forest), as results from the impact of selective logging. Fires also play a significant role, with 1.03 ± 0.22 Pg C yr−1 of carbon emissions, mainly (90%) originated by savanna and woodland burning. But whether fire carbon emissions are compensated by CO2 uptake during the growing season, or are a non-reversible loss of CO2, remains unclear. Most of these figures are subjected to a significant interannual variability, on the order of ± 0.5 Pg C yr−1 in standard deviation, accounting for around 25% of the year-to-year variation in the global carbon budget. These results, even if still highly uncertain, show the important role that Africa plays in the carbon cycle at global level, both in terms of absolute values and variability.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-10
    Description: A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-15
    Description: This study gives an outlook on the carbon balance of Sub-Saharan Africa (SSA) by presenting a summary of currently available results from the project CarboAfrica (namely net ecosystem productivity and emissions from fires, deforestation and forest degradation, by field and model estimates) supplemented by bibliographic data and compared with a new synthesis of the data from national communications to UNFCCC. According to these preliminary estimates the biogenic carbon balance of SSA varies from 0.16 Pg C y−1 to a much higher sink of 1.00 Pg C y−1 (depending on the source data). Models estimates would give an unrealistic sink of 3.23 Pg C y−1, confirming their current inadequacy when applied to Africa. The carbon uptake by forests and savannas (0.34 and 1.89 Pg C y−1, respectively,) are the main contributors to the resulting sink. Fires (0.72 Pg C y−1) and deforestation (0.25 Pg C y−1) are the main contributors to the SSA carbon emissions, while the agricultural sector and forest degradation contributes only with 0.12 and 0.08 Pg C y−1, respectively. Savannas play a major role in shaping the SSA carbon balance, due to their large extension, their fire regime, and their strong interannual NEP variability, but they are also a major uncertainty in the overall budget. Even if fossil fuel emissions from SSA are relative low, they can be crucial in defining the sign of the overall SSA carbon balance by reducing the natural sink potential, especially in the future. This paper shows that Africa plays a key role in the global carbon cycle system and probably could have a potential for carbon sequestration higher than expected, even if still highly uncertain. Further investigations are needed, particularly to better address the role of savannas and tropical forests and to improve biogeochemical models. The CarboAfrica network of carbon measurements could provide future unique data sets for better estimating the African carbon balance.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-28
    Description: This paper, developed under the framework of the RECCAP initiative, aims at providing improved estimates of the carbon and GHG (CO2, CH4 and N2O) balance of continental Africa. The various components and processes of the African carbon and GHG budget are considered, existing data reviewed, and new data from different methodologies (inventories, ecosystem flux measurements, models, and atmospheric inversions) presented. Uncertainties are quantified and current gaps and weaknesses in knowledge and monitoring systems described in order to guide future requirements. The majority of results agree that Africa is a small sink of carbon on an annual scale, with an average value of −0.61 ± 0.58 Pg C yr−1. Nevertheless, the emissions of CH4 and N2O may turn Africa into a net source of radiative forcing in CO2 equivalent terms. At sub-regional level, there is significant spatial variability in both sources and sinks, due to the diversity of biomes represented and differences in the degree of anthropic impacts. Southern Africa is the main source region; while central Africa, with its evergreen tropical forests, is the main sink. Emissions from land-use change in Africa are significant (around 0.32 ± 0.05 Pg C yr−1), even higher than the fossil fuel emissions: this is a unique feature among all the continents. There could be significant carbon losses from forest land even without deforestation, resulting from the impact of selective logging. Fires play a significant role in the African carbon cycle, with 1.03 ± 0.22 Pg C yr−1 of carbon emissions, and 90% originating in savannas and dry woodlands. A large portion of the wild fire emissions are compensated by CO2 uptake during the growing season, but an uncertain fraction of the emission from wood harvested for domestic use is not. Most of these fluxes have large interannual variability, on the order of ±0.5 Pg C yr−1 in standard deviation, accounting for around 25% of the year-to-year variation in the global carbon budget. Despite the high uncertainty, the estimates provided in this paper show the important role that Africa plays in the global carbon cycle, both in terms of absolute contribution, and as a key source of interannual variability.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-03
    Description: A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-02-20
    Description: This study presents a summary overview of the carbon balance of Sub-Saharan Africa (SSA) by synthesizing the available data from national communications to UNFCCC and first results from the project CarboAfrica (net ecosystem productivity and emissions from fires, deforestation and forest degradation, by field and model estimates). According to these preliminary estimates the overall carbon balance of SSA varies from 0.43 Pg C y−1 (using in situ measurements for savanna NEP) to a much higher sink of 2.53 Pg C y−1 (using model estimates for savanna NEP). UNFCCC estimates lead to a moderate carbon sink of 0.58 Pg C y−1. Excluding anthropogenic disturbance and intrinsic episodic events, the carbon uptake by forests (0.98 Pg C y−1) and savannas (from 1.38 to 3.48 Pg C y−1, depending on the used methodology) are the main components of the SSA sink effect. Fires (0.72 Pg C y−1), deforestation (0.25 Pg C y−1) and forest degradation (0.77 Pg C y−1) are the main contributors to the SSA carbon emissions, while the agricultural sector contributes only with 0.12 Pg C y−1. Notably, the impact of forest degradation is higher than that caused by deforestation, and the SSA forest net carbon balance is close to equilibrium. Savannas play a major role in shaping the SSA carbon balance, due to their large areal extent, their fire regime, and their strong interannual NEP variability, but they are also a major uncertainty in the overall budget. This paper shows that Africa plays a key role in the global carbon cycle system and probably could have a potential for carbon sequestration higher than expected, even if still highly uncertain. Further investigations are needed, particularly to better address the role of savannas and tropical forests. The current CarboAfrica network of carbon measurements could provide future unique data sets for better estimating the African carbon balance.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-06
    Description: Hazard mapping is carried out in Italy according to the AINEVA guidelines, which require (i) data driven avalanche dynamic modelling to assess end mark and pressure, and (ii) assessment of maximum yearly three-day snow depth increase h72 for 30 to 300 years return period. When no historical avalanche data are present, model tuning and data based assessment of avalanche return periods are hardly feasible. Also when (very) short series of h72 are available, station based quantile estimation for such high return periods is very uncertain, and regionally based approaches can be used. We apply an index value approach for the case study avalanche of Rigopiano, where a 105 m3 snow mass hit the Rigopiano Hotel killing 29 persons on January 18th 2017. This area is poorly monitored avalanche wise, and displays short series (max 14 years) of snow depth measurements, no historical avalanche maps are available on the avalanche track, and no hazard maps have been developed hitherto. First, we tune the recently developed Poly-Aval dynamic avalanche model (1D/q2D) against the 18th January event data (release zone, release depth, end mark) from different sources. We then use snow data from 7 snow stations in Abruzzo (75 equivalent years of data) to tune a regionally valid distribution of h72. We then calculate the 30-years, 100-years, and 300-years runout zone and flow pressures, including confidence limits. We demonstrate that (i) properly tuned 1D/quasi2D models can be used for avalanche modeling even within poorly monitored area as here, and (ii) the use of regional analysis allows hazard mapping for large return periods, reducing greatly the uncertainty against canonical, single site analysis. Our approach is usable in poorly monitored regions like Abruzzo here, and we suggest that (i) avalanche hazard mapping needs to be pursued with regional approaches for h72, and (ii) confidence limits need to be provided for the proposed zoning.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...