ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-01
    Description: We provide a regional characterization of coarse particulate matter (PM10–2.5) spanning the western United States based on the analysis of measurements from 50 sites reported in the US EPA Air Quality System (AQS) and two state agencies. We found that the observed PM10–2.5 concentrations show significant spatial variability and distinct spatial patterns, associated with the distributions of land use/land cover and soil moisture. The highest concentrations were observed in the southwestern US, where sparse vegetation, shrublands or barren lands dominate with lower soil moistures, whereas the lowest concentrations were observed in areas dominated by grasslands, forest, or croplands with higher surface soil moistures. The observed PM10–2.5 concentrations also show variable seasonal, weekly, and diurnal patterns, indicating a variety of sources and their relative importance at different locations. The observed results were compared to modeled PM10–2.5 concentrations from an annual simulation using the Community Multiscale Air Quality modeling system (CMAQ) that has been designed for regulatory or policy assessments of a variety of pollutants including PM10, which consists of PM10–2.5 and fine particulate matter (PM2.5). The model under-predicts PM10–2.5 observations at 49 of 50 sites, among which 14 sites have annual observation means that are at least five times greater than model means. Model results also fail to reproduce their spatial patterns. Important sources (e.g. pollen, bacteria, fungal spores, and geogenic dust) were not included in the emission inventory used and/or the applied emissions were greatly under-estimated. Unlike the observed patterns that are more complex, modeled PM10–2.5 concentrations show the similar seasonal, weekly, and diurnal pattern; the temporal allocations in the modeling system need improvement. CMAQ does not include organic materials in PM10–2.5; however, speciation measurements show that organics constitute a significant component. The results improve our understanding of sources and behavior of PM10–2.5 and suggest avenues for future improvements to models that simulate PM10–2.5 emissions, transport and fate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-03
    Description: We provide a regional characterization of coarse particulate matter (PM10–2.5) spanning the western United States based on the analysis of measurements from 50 sites reporting in the US EPA Air Quality System (AQS) and two state agencies. We found that the observed PM10–2.5 concentrations show significant spatial variability and distinct spatial patterns, associated with the distributions of land use/land cover and soil moisture. The highest concentrations were observed in the southwestern US, where sparse vegetation, shrublands or barren lands dominate with lower soil moistures, whereas the lowest concentrations were observed in areas dominated by grasslands, forest, or croplands with higher surface soil moistures. The observed PM10–2.5 concentrations also show variable seasonal, weekly, and diurnal patterns, indicating a variety of sources and their relative importance at different locations. To obtain insights for regional PM10–2.5 modeling, the observed results were also compared to modeled PM10–2.5 concentrations from an annual simulation using the Community Multiscale Air Quality modeling system (CMAQ) that has been designed for regulatory or policy assessments of a variety of pollutants including PM10, which consists of PM10–2.5 and fine particulate matter (PM2.5). The model under-predicts PM10–2.5 observations at 49 of 50 sites, among which 14 sites have annual observation means that are at least five times greater than model means. Model results also fail to reproduce their spatial patterns. Important sources were not included in the emission inventory used and/or the applied emissions were greatly under-estimated. Unlike observations, the modeled concentrations show similar seasonal, weekly, and diurnal pattern across the entire domain. CMAQ does not include organics in PM10–2.5, which recent measurements show to be a significant component. The results of the analysis improve our understanding of sources and behavior of PM10–2.5 and suggest avenues for future improvements to models that simulate PM10–2.5 emissions, transport and fate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-29
    Description: For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to track source impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOCs), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong nonlinearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, where appropriate use depends on whether source attribution or source sensitivity is desired.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-20
    Description: Four different parameterizations for the formation and evolution of secondary organic aerosol (SOA) are evaluated using a 0-D box model representing the Los Angeles Metropolitan Region during the CalNex 2010 field campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model-measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model/measurement agreement for mass concentration. When comparing the three parameterizations, the Grieshop et al. (2009) parameterization more accurately reproduces both the SOA mass concentration and oxygen-to-carbon ratio inside the urban area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the parameterizations over-predict urban SOA formation at long photochemical ages (≈ 3 days) compared to observations from multiple sites, which can lead to problems in regional and global modeling. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Polycyclic aromatic hydrocarbons (PAHs) are less important precursors and contribute less than 4% of the SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71 (±3) %. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μg m−3 is also present due to the long distance transport of highly aged OA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr−1 of SOA globally, or 17% of global SOA, 1/3 of which is likely to be non-fossil.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-05
    Description: Community Multiscale Air Quality (CMAQ) model simulations utilizing the volatility basis set (VBS) treatment for organic aerosols (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of organic aerosol (OA) in southern California. CMAQ-VBS (OA lumped by volatility, semivolatile POA) underpredicted total organic carbon (OC) at CSN (−25.5 % Normalized Median Bias (NMdnB)) and IMPROVE (−63.9 % NMdnB) locations and total OC was underpredicted to a greater degree compared to the CMAQ-AE6 (9.9 and −55.7 % NMdnB, respectively; semi-explicit OA treatment, SOA lumped by parent hydrocarbon, nonvolatile POA). However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA indicated that CMAQ-VBS better represented the diurnal profile and the primary/secondary split of OA. CMAQ-VBS secondary organic aerosol (SOA) underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate of SOA) concentration by a factor of 5.2 (4.7 μg m−3 measured vs. 0.9 μg m−3 modeled), a considerable improvement to CMAQ-AE6 SOA predictions, which were approximately 24× lower than the average AMS OOA concentration. We use two new methods, based on species ratios and on a simplified SOA parameterization from the observations, to apportion the SOA underprediction for CMAQ-VBS to too slow photochemical oxidation (estimated as 1.5× lower than observed at Pasadena using − log (NOx: NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2× for Pasadena), and too low emissions or too high dispersion for the Pasadena site (estimated to be 1.6 to 2.3× too low/high). The first and third factors will be similar for CMAQ-AE6, while the intrinsic SOA formation efficiency for that model is estimated to be too low by about 7×. For CMAQ-VBS, 90 % of the anthropogenic SOA mass formed was attributed to aged secondary semivolatile vapors (70 % originating from volatile organic compounds (VOCs) and 20 % from intermediate volatility compounds (IVOCs)). From source-apportioned model results, we found most of the CMAQ-VBS modeled POA at the Pasadena CalNex site was attributable to meat cooking emissions (48 %, and consistent with a substantial fraction of cooking OA in the observations), compared to 18 % from gasoline vehicle emissions, 13 % from biomass burning (in the form of residential wood combustion), and 8 % from diesel vehicle emissions. All "other" inventoried emission sources (e.g. industrial/point sources) comprised the final 13 %. The CMAQ-VBS semivolatile POA treatment underpredicted AMS hydrocarbon-like OA (HOA) + cooking-influenced OA (CIOA) at Pasadena by a factor of 1.8 (1.16 μg m−3 modeled vs. 2.05 μg m−3 observed) compared to a factor of 1.4 overprediction of POA in CMAQ-AE6, but did well to capture the AMS diurnal profile of HOA and CIOA, with the exception of the midday peak. We estimated that using the National Emission Inventory (NEI) POA emissions without scaling to represent SVOCs underestimates SVOCs by ~1.7×.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-07
    Description: Co-located measurements of fine particulate matter (PM2.5) organic carbon, elemental carbon, radiocarbon (14C), speciated volatile organic compounds (VOCs), and OH radical during the CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air Quality (CMAQ) model's representation of organic species from VOCs to particles. Episode averaged daily 23 h average 14C analysis indicate PM2.5 carbon at Pasadena and Bakersfield during the CalNex field campaign was evenly split between contemporary and fossil origin. CMAQ predicts a higher contemporary carbon fraction than indicated by the 14C analysis at both locations. The model underestimates measured PM2.5 organic carbon at both sites with very little (7% in Pasadena) of the modeled mass represented by secondary production, which contrasts with the ambient based SOC/OC fraction of 63% at Pasadena. Measurements and predictions of gas-phase anthropogenic species, such as toluene and xylenes, are generally within a factor of 2, but the corresponding secondary organic carbon (SOC) tracer (2,3-dihydroxy-4-oxo-pentanioc acid) is systematically underpredicted by more than a factor of 2. Monoterpene VOCs and SOCs are underestimated at both sites. Isoprene is underestimated at Pasadena and over predicted at Bakersfield and isoprene SOC mass is underestimated at both sites. Systematic model underestimates in SOC mass coupled with reasonable skill (typically within a factor of 2) in predicting hydroxyl radical and VOC gas phase precursors suggests error(s) in the parameterization of semi-volatile gases to form SOC. Yield values (α) applied to semi-volatile partitioning species were increased by a factor of 4 in CMAQ for a sensitivity simulation, taking in account recent findings of underestimated yields in chamber experiments due to gas wall losses. This sensitivity resulted in improved model performance for PM2.5 organic carbon at both field study locations and at routine monitoring network sites in California. Modeled percent secondary contribution (22% at Pasadena) becomes closer to ambient based estimates but is still too primary compared with ambient estimates at the CalNex sites.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-03
    Description: For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to estimate impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong non-linearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, depending on whether sources of interest are either to be accounted for pollutant levels in a given scenario, or to be perturbed to invoke alternate scenarios.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-21
    Description: Biogenic volatile organic compounds (BVOC) participate in reactions that can lead to secondarily formed ozone and particulate matter (PM) impacting air quality and climate. BVOC emissions are important inputs to chemical transport models applied on local to global scales but considerable uncertainty remains in the representation of canopy parameterizations and emission algorithms from different vegetation species. The Biogenic Emission Inventory System (BEIS) has been used to support both scientific and regulatory model assessments for ozone and PM. Here we describe a new version of BEIS which includes updated input vegetation data and canopy model formulation for estimating leaf temperature and vegetation data on estimated BVOC. The Biogenic Emission Landuse Database (BELD) was revised to incorporate land use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) land product and 2006 National Land Cover Database (NLCD) land coverage. Vegetation species data is based on the US Forest Service (USFS) Forest Inventory and Analysis (FIA) version 5.1 for years from 2002 to 2013 and US Department of Agriculture (USDA) 2007 census of agriculture data. This update results in generally higher BVOC emissions throughout California compared with the previous version of BEIS. Baseline and updated BVOC emissions estimates are used in Community Multiscale Air Quality Model (CMAQ) simulations with 4 km grid resolution and evaluated with measurements of isoprene and monoterpenes taken during multiple field campaigns in northern California. The updated canopy model coupled with improved land use and vegetation representation resulted in better agreement between CMAQ isoprene and monoterpene estimates compared with these observations.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-09-30
    Description: The Halley PACE HF radar has been operated in a new mode to provide very high time (10 s) and space (15 km) resolution measurements of the iono-spheric signatures of the cusp and the low-latitude boundary layer. The first data show that the iono-spheric signature of flux transfer events occur up to 300 km equatorward of regions showing the HF characteristics of the ionospheric cusp. Whilst larger flux transfer events are seen, on average, every 7 min, many much smaller and short-duration events have been identified. On one occasion DMSP data have been used to show that at least four flux transfer events are occurring simultaneously at the edge of the cusp over 2 h of MLT. There is strong, but not conclusive evidence, that reconnection at the magnetopause is both intermittent and patchy. These data also suggest that flux transfer events can be a significant contributor to the cross-polar cap potential.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-04-30
    Description: Data from HF-radars are used to make the first simultaneous conjugate measurements of the day-side reconnection electric field. A period of 4 h around local magnetic noon are studied during a geospace environment modeling (GEM) boundary layer campaign. The interplanetary magnetic field (IMF) was southward whilst the eastward component (By) was variable. The flow patterns derived from the radar data show the expected conjugate asymmetries associated with  IMF |By| 〉 0. High-time resolution data (50 and 100 s) enable the flow of plasma across the open/closed field line boundary (the separatrix) to be studied in greater detail than in previous work. The latitude of the separatrix follows the same general trend in both hemispheres but shows a hemispherical difference of 4°, with the summer cusp at higher latitude, as expected from dipole tilt considerations. However, the short-time scale motion of the separatrix cannot be satisfactorily resolved within the best resolution (300 m s-1) of the experiment. The orientation of the separatrix with respect to magnetic latitude is found to follow the same trend in both hemispheres and qualitatively fits that predicted by a model auroral oval. It shows no correlation with IMF By. However, the degree of tilt in the Northern (summer) Hemisphere is found to be significantly greater than that given by the model oval. The convection pattern data show that the meridian at which throat flow occurs is different in the two hemispheres and is controlled by IMF By, in agreement with empirically derived convection patterns and theoretical models. The day-side reconnection electric field values are largest when the radar's meridian is in the throat flow or early afternoon flow regions. In the morning or afternoon convection cells, the reconnection electric field tends to zero away from the throat flow region. The reconnection electric field observed in the throat flow region is bursty in nature.Key words. Ionosphere (plasma convection; polar ionosphere) · Magnetospheric physics (magnetosphere-ionosphere interactions)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...